Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation

Ashish Kumar, Christian Schuerings, Suneel Kumar, Ajay Kumar and Venkata Krishnan
Beilstein J. Nanotechnol. 2018, 9, 671–685. https://doi.org/10.3762/bjnano.9.62

Supporting Information

Supporting Information File 1: Additional experimental results.
EDAX spectra of g-C3N4, CT and CTCN heterojunction (Figure S1). Elemental mapping of g-C3N4, CT and CTCN composite (Figure S2–S4). Time-dependent absorption spectra of RhB degradation under different light irradiation conditions for control samples and pure RhB (Figure S5). C/C0 vs time plots for the photocatalytic degradation of RhB under UV, visible and sunlight irradiation (Figure S6). Summary of the kinetic data of photocatalytic degradation of RhB (Table S1 and S2). Absorption curves for the calculation of adsorption percentage of RhB and BPA (Figure S7).
Format: PDF Size: 1.9 MB Download

Cite the Following Article

Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation
Ashish Kumar, Christian Schuerings, Suneel Kumar, Ajay Kumar and Venkata Krishnan
Beilstein J. Nanotechnol. 2018, 9, 671–685. https://doi.org/10.3762/bjnano.9.62

How to Cite

Kumar, A.; Schuerings, C.; Kumar, S.; Kumar, A.; Krishnan, V. Beilstein J. Nanotechnol. 2018, 9, 671–685. doi:10.3762/bjnano.9.62

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.6 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kumar, M.; Gaur, A.; Chauhan, V. S.; Vaish, R.; Kebaili, I. Tribocatalytic dye degradation using BiVO4. Ceramics International 2024, 50, 8360–8369. doi:10.1016/j.ceramint.2023.12.171
  • Bibi, A.; Shakoor, A.; Raffi, M.; Hina, M.; Niaz, N. A.; Fatima, S. A.; Qureshi, M. N. Exploring the potential of polyaniline-calcium titanate (PANI-CaTiO3) nanocomposites in supercapacitors: Synthesis and electrochemical investigation. Journal of Energy Storage 2024, 78, 110321. doi:10.1016/j.est.2023.110321
  • Wei, W.; Bian, H.; Zhang, X.; OuYang, Z.; Zhang, Z.; Wang, T. Promoting photocarriers separation in distinctive ternary g-C3N4/Ni2P/ZnO composite with Ni2P electron-bridge. Journal of Industrial and Engineering Chemistry 2024. doi:10.1016/j.jiec.2024.01.043
  • Soni, A.; Mishra, S.; Vaya, D.; Surolia, P. K. Role of Ag and g-C3N4 over CaTiO3 for effective photocatalytic degradation of nitrobenzene. Inorganic Chemistry Communications 2024, 159, 111862. doi:10.1016/j.inoche.2023.111862
  • Li, K.; Song, N.; Guo, Z.; Liang, M. Heterobimetallic [Nico] Integration in a Hydrogenase Mimic for Boosting Light-Driven Hydrogen Evolution in Catio3. Elsevier BV 2024. doi:10.2139/ssrn.4694149
  • Foroughipour, M.; Nezamzadeh-Ejhieh, A. CaTiO3 perovskite /g-C3N4 heterojunction-based composite photocatalyst, part II: Synthesis, characterization and the boosted photocatalytic activity towards Gemifloxacin. Diamond and Related Materials 2024, 141, 110711. doi:10.1016/j.diamond.2023.110711
  • Gaur, A.; Kumar Moharana, A.; Porwal, C.; Singh Chauhan, V.; Vaish, R. Degradation of organic dyes by utilizing CaCu3Ti4O12 (CCTO) nanoparticles via tribocatalysis process. Journal of Industrial and Engineering Chemistry 2024, 129, 341–351. doi:10.1016/j.jiec.2023.08.048
  • Thien, G. S. H.; Chan, K.-Y.; Marlinda, A. R.; Yap, B. K. Polymer-enhanced perovskite oxide-based photocatalysts: a review. Nanoscale 2023, 15, 19039–19061. doi:10.1039/d3nr03874b
  • Sharafinia, S.; Farrokhnia, A.; Lemraski, E. G.; Rashidi, A. Magnetic perovskite nanohybrid based on g-C3N4 nanosheets for photodegradation of toxic environmental pollutants under short-time visible irradiation. Scientific reports 2023, 13, 21323. doi:10.1038/s41598-023-48725-x
  • Zhao, S.; Liu, S.; Ding, B.; Mao, L.; Zheng, S.; Zhang, J. A novel chemical reaction between P25 and γ-Bi2O3 in CaTiO3 preparation constructing two new transfer channels of charge carriers to boost photocatalytic degradation activity. Chemical Engineering Journal 2023, 478, 147348. doi:10.1016/j.cej.2023.147348
  • Gaur, A.; Porwal, C.; Chauhan, V. S.; Vaish, R. Synergic effect of photocatalysis and tribocatalysis for dye degradation by BaTiO3 ceramics. Journal of the American Ceramic Society 2023, 107, 2393–2406. doi:10.1111/jace.19565
  • Cerón-Urbano, L.; Aguilar, C. J.; Diosa, J. E.; Mosquera-Vargas, E. Nanoparticles of the Perovskite-Structure CaTiO3 System: The Synthesis, Characterization, and Evaluation of Its Photocatalytic Capacity to Degrade Emerging Pollutants. Nanomaterials (Basel, Switzerland) 2023, 13, 2967. doi:10.3390/nano13222967
  • Gaur, A.; Porwal, C.; Chauhan, V. S.; Vaish, R. Tribocatalytic investigation of BaTiO3 for dye removal from water. Journal of Materials Science: Materials in Electronics 2023, 34. doi:10.1007/s10854-023-11511-6
  • Altin, I. Perovskite Type B-CaTiO3 Coupled with Graphene Oxide as Efficient Bifunctional Composites for Environmental Remediation. Processes 2023, 11, 3191. doi:10.3390/pr11113191
  • Zhang, Q.; Wang, Y.; Jia, Y.; Yan, W.; Li, Q.; Zhou, J.; Wu, K. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study. Molecules (Basel, Switzerland) 2023, 28, 7134. doi:10.3390/molecules28207134
  • Kumar, A.; Sharma, M.; Sheoran, S.; Jaiswal, S.; Patra, A.; Bhattacharya, S.; Krishnan, V. Tailoring defects in SrTiO3 by one step nanoarchitectonics for realizing photocatalytic nitrogen fixation in pure water. Nanoscale 2023, 15, 11667–11680. doi:10.1039/d3nr01982a
  • Yang, H.; Li, X.; Zhao, T.; Peng, Q.; Yang, W.; Cao, J.; Zheng, Y.; Li, C.; Pan, J. The CdS/CaTiO3 cubic core-shell composite towards enhanced photocatalytic hydrogen evolution and photodegradation. International Journal of Hydrogen Energy 2023, 48, 21788–21798. doi:10.1016/j.ijhydene.2023.03.076
  • Kumar, A.; Choudhary, P.; Chhabra, T.; Kaur, H.; Kumar, A.; Qamar, M.; Krishnan, V. Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Materials Chemistry Frontiers 2023, 7, 1197–1247. doi:10.1039/d2qm01064j
  • Luo, M.; Xu, J.; Xu, W.; Zheng, Y.; Wu, G.; Jeong, T. Photocatalytic Activity of MoS2 Nanoflower-Modified CaTiO3 Composites for Degradation of RhB under Visible Light. Nanomaterials (Basel, Switzerland) 2023, 13, 636. doi:10.3390/nano13040636
  • Ücker, C. L.; Almeida, S. R.; Cantoneiro, R. G.; Diehl, L. O.; Cava, S.; Moreira, M. L.; Longo, E.; Raubach, C. W. Study of CaTiO3–ZnS heterostructure obtained by microwave-assisted solvothermal synthesis and its application in photocatalysis. Journal of Physics and Chemistry of Solids 2023, 172, 111050. doi:10.1016/j.jpcs.2022.111050
Other Beilstein-Institut Open Science Activities