Cite the Following Article
Heavy-metal detectors based on modified ferrite nanoparticles
Urszula Klekotka, Ewelina Wińska, Elżbieta Zambrzycka-Szelewa, Dariusz Satuła and Beata Kalska-Szostko
Beilstein J. Nanotechnol. 2018, 9, 762–770.
https://doi.org/10.3762/bjnano.9.69
How to Cite
Klekotka, U.; Wińska, E.; Zambrzycka-Szelewa, E.; Satuła, D.; Kalska-Szostko, B. Beilstein J. Nanotechnol. 2018, 9, 762–770. doi:10.3762/bjnano.9.69
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 387.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Xia, C.; Zhang, H.; Xie, M.; Che, J.; Feng, Q.; Zhang, Y.; Ma, G.; Liu, M.; Hu, S.; He, Y.; Liu, X.; Li, Z.; Fan, H. Parallel comparative studies on composition-dependent peroxidase-like catalytic activity of ultrasmall ferrite nanoparticles. Journal of materials chemistry. B 2025, 13, 8434–8445. doi:10.1039/d5tb00626k
- Zhao, X.; Kou, X.; Li, X.; Li, M.; Xi, D.; Farid, A.; Huang, H.; Zhao, Y. N-doped carbon nanotubes as electron transport promoter by bridging MnFe2O4 and carbon cloth for simultaneous detection of heavy metal ions (Cd2+ and Pb2+). Microchemical Journal 2025, 214, 114104. doi:10.1016/j.microc.2025.114104
- Bielicka, M.; Maliszewska, J.; Klekotka, U.; Wasilewska, A.; Zambrzycka-Szelewa, E.; Satuła, D.; Kalska-Szostko, B. Surface modified ferrite nanoparticles as efficient detectors of heavy metals in natural solutions. Environmental Nanotechnology, Monitoring & Management 2024, 22, 100958. doi:10.1016/j.enmm.2024.100958
- Tomina, E. V.; Sladkopevtsev, B. V.; Tien, N. A.; Mai, V. Q. Nanocrystalline Ferrites with Spinel Structure for Various Functional Applications. Inorganic Materials 2023, 59, 1363–1385. doi:10.1134/s0020168523130010
- Tomina, E.; Novikova, L.; Kotova, A.; Meshcheryakova, A.; Krupskaya, V.; Morozov, I.; Koroleva, T.; Tyupina, E.; Perov, N.; Alekhina, Y. ZnFe2O4/Zeolite Nanocomposites for Sorption Extraction of Cu2+ from Aqueous Medium. AppliedChem 2023, 3, 452–476. doi:10.3390/appliedchem3040029
- Wang, Y.; Lin, K.; Liu, Y.; Deng, X. Nanocomposites of functionalized Metal−Organic frameworks and magnetic graphene oxide for selective adsorption and efficient determination of Lead(II). Journal of Solid State Chemistry 2022, 313, 123300. doi:10.1016/j.jssc.2022.123300
- Tamilselvan, S.; Soniya, R. M.; Vasantharaja, R.; Kannan, M.; Supriya, S.; Dass Batvari, B. P.; Ramesh, T.; Govindaraju, K. Silver nanoparticles based spectroscopic sensing of eight metal ions in aqueous solutions. Environmental research 2022, 212, 113585. doi:10.1016/j.envres.2022.113585
- Klekotka, U.; Wińska, E.; Zambrzycka-Szelewa, E.; Satuła, D.; Kalska-Szostko, B. Magnetic Nanoparticles as Effective Heavy Ion Adsorbers in Natural Samples. Sensors (Basel, Switzerland) 2022, 22, 3297. doi:10.3390/s22093297
- Klekotka, U.; Zambrzycka-Szelewa, E.; Satuła, D.; Kalska-Szostko, B. Stability Studies of Magnetite Nanoparticles in Environmental Solutions. Materials (Basel, Switzerland) 2021, 14, 5069. doi:10.3390/ma14175069
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M. M.; Shabnam, A. A.; Jigyasu, D. K.; Malyan, S. K.; Fagodiya, R. K.; Khan, S. A.; Yu, Z.-G. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2020, 268, 128855. doi:10.1016/j.chemosphere.2020.128855
- Nemati, F.; Jafari, D.; Esmaeili, H. Highly efficient removal of toxic ions by the activated carbon derived from Citrus limon tree leaves. Carbon Letters 2020, 31, 509–521. doi:10.1007/s42823-020-00181-7
- Borji, H.; Ayoub, G. M.; Bilbeisi, R. A.; Nassar, N. N.; Malaeb, L. How Effective Are Nanomaterials for the Removal of Heavy Metals from Water and Wastewater. Water, Air, & Soil Pollution 2020, 231, 1–35. doi:10.1007/s11270-020-04681-0
- Kumar, A.; M.M.S., C.-P.; Chaturvedi, A. K.; Shabnam, A. A.; Subrahmanyam, G.; Mondal, R.; Gupta, D. K.; Malyan, S. K.; Kumar, S. S.; Khan, S. A.; Yadav, K. K. Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches. International journal of environmental research and public health 2020, 17, 2179. doi:10.3390/ijerph17072179
- Al Shehab, S.; Kurdi, R. E.; Patra, D. Curcumin mediated PEG thiol acid conjugated gold nanoparticles for the determination of melamine. Microchemical Journal 2020, 153, 104382. doi:10.1016/j.microc.2019.104382
- Kumar, S.; Prasad, S.; Yadav, K. K.; Shrivastava, M.; Gupta, N.; Nagar, S.; Bach, Q.-V.; Kamyab, H.; Khan, S. A.; Yadav, S.; Malav, L. C. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - A review. Environmental research 2019, 179, 108792. doi:10.1016/j.envres.2019.108792
- Klekotka, U.; Zambrzycka-Szelewa, E.; Kalska-Szostko, B. Stability of nanowires in environmental aqueous solutions. Journal of Molecular Liquids 2019, 274, 477–483. doi:10.1016/j.molliq.2018.10.130
- Klekotka, U.; Piotrowska, B.; Satuła, D.; Giersig, M.; Kalska-Szostko, B. Ferrite Core‐Shell Nanoparticles Synthesized by Seed‐Based Method Characterization and Potential Application. physica status solidi (a) 2018, 215, 1700901. doi:10.1002/pssa.201700901