Search results

Search for "thermal conductivity" in Full Text gives 128 result(s) in Beilstein Journal of Nanotechnology.

Electron transport through nanoscale multilayer graphene and hexagonal boron nitride junctions

  • Aleksandar Staykov and
  • Takaya Fujisaki

Beilstein J. Nanotechnol. 2025, 16, 2132–2143, doi:10.3762/bjnano.16.147

Graphical Abstract
  • graphene-based electronics and as a dielectric material in nanoelectronics devices. It finds application regarding corrosion resistance and antioxidation protective coatings [19]. Due to its high thermal conductivity and electrical insulation, h-BN is used in thermal management applications. h-BN is used
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2025

Laser ablation in liquids for shape-tailored synthesis of nanomaterials: status and challenges

  • Natalie Tarasenka

Beilstein J. Nanotechnol. 2025, 16, 1963–1997, doi:10.3762/bjnano.16.137

Graphical Abstract
  • heat transfer coefficient, Nu is the Nusselt number, k is thermal conductivity of the surrounding liquid, L is the characteristic length, and Tbl is the surrounding liquid boiling temperature. In order to analyse the reached temperatures and occurring thermal processes, the dissipated heat fluxes
PDF
Album
Perspective
Published 10 Nov 2025

Bioinspired polypropylene-based functionally graded materials and metamaterials modeling the mistletoe–host interface

  • Lina M. Rojas González,
  • Naeim Ghavidelnia,
  • Christoph Eberl and
  • Max D. Mylo

Beilstein J. Nanotechnol. 2025, 16, 1592–1606, doi:10.3762/bjnano.16.113

Graphical Abstract
  • pressure during hot pressing also play a crucial role in the development of stable materials. The thermal conductivity is reduced by increasing the glass fiber content; thus, the molecular movement of the polymer is reduced, which affects the tensile modulus and the maximal strength of the material [41
PDF
Album
Full Research Paper
Published 11 Sep 2025

Dendrimer-modified carbon nanotubes for the removal and recovery of heavy metal ions from water

  • Thao Quynh Ngan Tran,
  • Huu Trung Nguyen,
  • Subodh Kumar and
  • Xuan Thang Cao

Beilstein J. Nanotechnol. 2025, 16, 1522–1532, doi:10.3762/bjnano.16.107

Graphical Abstract
  • application in numerous fields [18][19][20][21][22][23]. CNTs are particularly attractive as support materials due to their high specific surface area, mechanical strength, and excellent electrical and thermal conductivity [24][25][26][27]. CNTs themselves have been utilized as adsorbents for removing heavy
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2025

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications

  • Akshana Parameswaran Sreekala,
  • Pooja Raveendran Nair,
  • Jithin Kundalam Kadavath,
  • Bindu Krishnan,
  • David Avellaneda Avellaneda,
  • M. R. Anantharaman and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 1428–1498, doi:10.3762/bjnano.16.104

Graphical Abstract
  • illustrations of the pulsed laser heating mechanism are presented in Figure 7f,g. Factors such as laser fluence, irradiation time, and solvent properties, such as dielectric constant and thermal conductivity, must be carefully controlled to optimize nanoparticle formation [49][68][69][75]. Other factors like
PDF
Album
Review
Published 27 Aug 2025

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • ; therefore, the durations for the Cantor alloy may differ due to lower thermal conductivity [101][102] and different electron–phonon-coupling strength. Although statistical quantification of carbon content inside the core structures of HEA nanoparticles requires further in-depth analysis with specialized
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Zeolite materials with Ni and Co: synthesis and catalytic potential in the selective hydrogenation of citral

  • Inocente Rodríguez-Iznaga,
  • Yailen Costa Marrero,
  • Tania Farias Piñeira,
  • Céline Fontaine,
  • Lexane Paget,
  • Beatriz Concepción Rosabal,
  • Arbelio Penton Madrigal,
  • Vitalii Petranovskii and
  • Gwendoline Lafaye

Beilstein J. Nanotechnol. 2025, 16, 520–529, doi:10.3762/bjnano.16.40

Graphical Abstract
  • reduction (TPR) analyses were performed on an AutoChem 2910 instrument (Micromeritics, USA) equipped with a thermal conductivity detector (TCD). The procedure for TPR involved heating the sample in a 1.0 vol % H2/Ar gas mixture at a flow rate of 30 mL/min, from room temperature to 600 °C, at a ramp rate of
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2025

Size control of nanoparticles synthesized by pulsed laser ablation in liquids using donut-shaped beams

  • Abdel Rahman Altakroury,
  • Oleksandr Gatsa,
  • Farbod Riahi,
  • Zongwen Fu,
  • Miroslava Flimelová,
  • Andrei Samokhvalov,
  • Stephan Barcikowski,
  • Carlos Doñate-Buendía,
  • Alexander V. Bulgakov and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 407–417, doi:10.3762/bjnano.16.31

Graphical Abstract
  • top-view setup was applied to observe the bubble morphology evolution on a transparent yttrium aluminum garnet (YAG) target. The YAG crystal has a low thermal conductivity and a high laser-ablation threshold, minimizing the influence of the ablation products on cavitation bubble dynamics and, thus
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • headspace of the working electrode compartment of the electrochemical cell. Hydrogen was detected by a thermal conductivity detector, and a flame ionization detector equipped with a methanizer was used to detect all other gases. Following a published procedure [82], the gas chromatograph was programmed to
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • the dielectric environment present during their synthesis (see below in Figure 2b) [48][49]. Because of the direct occurrence of photothermal conversion on the surfaces of LSPR metals and its rapid nature, combined with the metals’ inherent high thermal conductivity and strong hydrophilicity, LSPR
PDF
Album
Review
Published 17 Feb 2025

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
  • performance of materials before they are synthesized [1][2][3]. This approach enables the discovery of materials with, for example, improved mechanical strength, enhanced thermal conductivity, superior electrical properties, or other tailored characteristics. Simulations provide crucial insights at different
PDF
Album
Perspective
Published 27 Nov 2024

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • two-dimensional (2D) material, consisting of a single layer of sp2-hybridized carbon atoms arranged together in a hexagonal lattice [1]. Because of its extraordinary electrical and thermal conductivity, large surface area, and easy chemical functionalization, it provides a variety of applications in
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters

  • Victoria Y. Safonova,
  • Anna V. Gordeeva,
  • Anton V. Blagodatkin,
  • Dmitry A. Pimanov,
  • Anton A. Yablokov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2024, 15, 1353–1361, doi:10.3762/bjnano.15.108

Graphical Abstract
  • clamp contacts as sample C1, but the measured area was further away from the contact points. This way, the current first flows through the superconducting electrodes with low thermal conductivity in the superconducting state, and only then goes to the bridge. Nevertheless, non-equilibrium heating
PDF
Album
Full Research Paper
Published 06 Nov 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • acceleration voltage) directly allows the ion beam-induced temperature increases per scan point to be minimized. Materials with a low thermal conductivity such as polymers or biological samples, for example, skin with a thermal conductivity of 0.29 W·m−1·K−1 [21], will show excessive increases in temperature
  • though this is not expected to be necessary in the case of processing collagen, further reducing the ion beam-induced heating by lowering the beam current and blurring the beam might be required for some polymers or biological samples that have a lower thermal conductivity than skin. Comparison of
  • ion energies can be found throughout the literature [25][26]. Heating has not been observed when working with frozen hydrated samples. The thermal conductivity of ice is 2–3 W·m−1·K−1 [27]. FIB-induced heat damage would not be expected for cryo FIB processes, since the thermal conductivity of cryo
PDF
Album
Full Research Paper
Published 27 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • experiments. Photocatalytic tests The as-synthesized catalyst was placed in a custom-made batch reactor with a small transparent quartz window, which was directly connected to a gas chromatograph (GC) with thermal conductivity and flame ionization detectors. A 300 W Xenon lamp was utilized as a light source
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • energy for migration. The difference between planar and spot deposit is the thickness of the deposit itself. While the silicon substrate suppresses beam-induced heating because of its high thermal conductivity, the deposit itself is most probably a bad heat conductor [39]. Consequently, a temperature
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • rings, which prevents planar deformations [33]. The same phenomenon explains the high thermal conductivity of up to 3000 W·m−1·K−1 [34][35] and the outstanding electrical properties [36][37][38]. Compared to conventional 3D materials, the understanding of electronic transport and carrier dynamics in
  • those of individual CNTs [71]. Nanodiamonds NDs are a carbon allotrope composed by sp3-hybridized carbon atoms arranged in a tetrahedral crystalline lattice structure [72]. The structure is accountable for the high thermal conductivity due to efficient heat conduction through phonon vibrations, which
  • can reach 550 W·m−1·K−1 after sintering at high pressure [73]. Nevertheless, surface defects and the granular shape of the NDs represent boundaries for phonon transport reducing the thermal energy propagation [74]. Furthermore, the thermal conductivity of NDs increases with the increment of
PDF
Album
Review
Published 16 Aug 2024

Bolometric IR photoresponse based on a 3D micro-nano integrated CNT architecture

  • Yasameen Al-Mafrachi,
  • Sandeep Yadav,
  • Sascha Preu,
  • Jörg J. Schneider and
  • Oktay Yilmazoglu

Beilstein J. Nanotechnol. 2024, 15, 1030–1040, doi:10.3762/bjnano.15.84

Graphical Abstract
  • thermistor region, can be fabricated in a single chemical vapor deposition process step. The thermistor resistance is mainly determined by the high junction resistances of the adjacent aligned CNTs. This configuration also provides low lateral thermal conductivity and a high temperature coefficient of
  • for non-cryogenic IR microbolometer technology, carbon nanotubes (CNTs) have emerged as highly promising candidates [2] with broadband blackbody absorption [3], high resistance perpendicular to the CNT orientation [4], low lateral thermal conductivity [5], a high temperature coefficient of resistance
  • applications [3]. The device resistance perpendicular to the CNT orientation is mainly determined by the high junction resistances of the neighboring aligned CNTs [4]. This configuration allows for high device resistance, low thermal conductivity, and high temperature coefficient of resistance, thus, enabling
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2024

Functional fibrillar interfaces: Biological hair as inspiration across scales

  • Guillermo J. Amador,
  • Brett Klaassen van Oorschot,
  • Caiying Liao,
  • Jianing Wu and
  • Da Wei

Beilstein J. Nanotechnol. 2024, 15, 664–677, doi:10.3762/bjnano.15.55

Graphical Abstract
  • experience is only ≈10−5 °C [37]. Additionally, even if a cell of the same size was capable of maintaining a 10-µm-thick air layer (with thermal conductivity of 3 × 10−3 W·m−1·K−1) along its surface, following steady-state one-dimensional heat conduction, it could still only experience a temperature
PDF
Album
Review
Published 06 Jun 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • also attracted significant interest. This material with exceptionally high specific surface area, high mechanical properties, and high thermal conductivity is expected to prepare high-performance rubber composites [21][22][23]. In our recent work [24], we successfully designed a DPNR/GO composite by
PDF
Album
Full Research Paper
Published 05 Feb 2024

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • nanoparticles at different concentrations. They found that the addition of nanoparticles enhanced the thermophysical properties and heat transfer characteristics of the lubricant. The researchers specified that nanolubricants typically provide greater thermal conductivity and viscosity in comparison to pure
  • lubricants [2]. Sanukrishna and Prakash [3] experimentally investigated the thermophysical properties of a nanolubricant containing TiO2 nanoparticles for volume fractions of 0.07 to 0.8% in a temperature range of 20 to 90 °C. The results showed that the thermal conductivity and viscosity of the
  • that the thermal conductivity and viscosity of the nanolubricant increased with the increase in mass fraction at a constant temperature. This capability in thermal conductivity enhancement can aid in addressing heat transfer issues within systems. Due to the fact that heat transfer takes place at the
PDF
Album
Full Research Paper
Published 02 Nov 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • application of electrochemical methods in detection of pesticides has already been extensively studied [9][10][11][12][13]. Nanomaterials are ideal for electrochemical sensing because of their unique properties such as high chemical stability, thermal conductivity, electrical conductivity, and large surface
PDF
Album
Full Research Paper
Published 09 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • AM 1.5 solar light (1000 W/m2) was provided by a Peccell L01 solar simulator. For each test, 200 µL gas samples were taken from the photoreactor every 30 min and analyzed with two gas chromatographs equipped with either a flame ionization detector (FID, Agilent 7890A) or a thermal conductivity
PDF
Album
Full Research Paper
Published 22 May 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • Fourier model. Keywords: ballistic transport; kinked nanowire; molecular dynamics; phonon Monte Carlo; thermal transport; Introduction The thermal conductivity of semiconductor nanostructures is of great interest because of potential applications in a wide variety of fields, such as thermal control
  • for unfettered ballistic phonon transit, suppressing the contribution to thermal transport. Heron et al. [23] found that nanowires with square serpentines with dimensions of a few hundred nanometers exhibit reductions in thermal conductivity of the order of 20–40%. Zhang et al. found that, in boron
  • transport, thus reducing the conductance (or equivalently, increasing the thermal resistance) for the same temperature difference. Works on serpentine nanowires show similar behaviour [22], with thermal conductivity asymptotically approaching a constant (which is analogous to an inverse proportionality for
PDF
Album
Full Research Paper
Published 15 May 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • materials [5], offering an array of products with a wide range of properties such as improved mechanical strength and higher thermal conductivity. To accelerate the further development and adoption of GR2Ms, it is critical to develop reliable and standardized methods to characterize the materials being
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023
Other Beilstein-Institut Open Science Activities