Search results

Search for "orbital" in Full Text gives 247 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • . Figure 9a shows the VB-XPS spectra of Bi2O3 and MIL101(Fe). As seen in Figure 9a, the valence band potential (EVB) of Bi2O3 and the highest occupied molecular orbital (HOMO) potential of MIL101(Fe) are 3.12 and 1.92 eV, respectively. According to the equation: Eg = EVB − ECB, the conduction band
  • potential (ECB) of Bi2O3 and the lowest unoccupied molecular orbital (LUMO) potential of MIL101(Fe) are calculated as 0.34 and −0.83 eV, respectively. The energy band position of Bi2O3 and MIL101(Fe) are shown in Figure 9b. According to Figure 9b, ECB and EVB of Bi2O3 are more positive than the LUMO and
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • of the zirconia system due to the variation of the number of electrons in the transition metal d orbital states. In this context, an experimental probe sensitive to the oxidation states of the magnetic ion as well as the local environment specific to a probed atom will be vital. Thus, X-ray
  • absorption spectrum near the ionization threshold of core electrons with orbital momentum l belonging to the absorbing atom [29]. It is sensitive to the electronic structure of the absorbing atom, since its intensity is nearly proportional to the density of the unoccupied states whose symmetry verifies the
  • calculation, the initial state is a core 1s orbital calculated from an isolated absorbing atom in the absence of a core hole, while the final state is obtained self-consistently through the solution of the KS equations for the whole system while including the core hole effects in the pseudopotential of the
PDF
Album
Full Research Paper
Published 15 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • measurements reveal a negligible charge transfer at the C60/ZnTPP interface. Finally, the difference between the energy of the lowest unoccupied molecular orbital (LUMO) and that of the highest occupied molecular orbital (HOMO) measured on C60 is about 3.75 eV, a value remarkably higher than those found in
PDF
Album
Full Research Paper
Published 30 Aug 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • , after heating, the oxygen concentration at the surface of the Ga–In–Sn eutectic liquid slightly decreased. Note that the 1s orbital of oxygen indicates the presence of carbonate groups at the surface of the Ga–In–Sn eutectic melt. Similarly, and not shown here, we observed a signal corresponding to the
  • 1s orbital of carbon. We attribute these contributions (CO32−, C–C/C–H, and C–O) to contamination from the ambient. As mentioned above, we performed the XPS measurements on these liquid samples without prior Ar+-ion sputtering or further heating inside the vacuum chamber of the XPS instrument. Given
PDF
Album
Full Research Paper
Published 23 Aug 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • orbital depairing in the fits, with an orbital depairing parameter [44] for a thin film in an in-plane field. From known sample parameters we estimate Bc,orb ≈ 2 T and ε’ ≈ 70, which leaves us with Δ and δφ as free parameters. The fits give a good account of the observed spin splitting. The spin mixing
PDF
Album
Full Research Paper
Published 20 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • deposited on a MoS2 crystal surface. Using near-edge X-ray absorption (NEXAFS), it was observed a strong dichroism in FePc thin films thicker than 4.5 nm. The strongest intensity of the N 1s→π* orbital transition at grazing incidence implies that the molecules are predominantly flat-lying with respect to
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • chemical enhancement owing to the interaction between semiconductor and/or noble metals with the analytes [7][35]. The chemical enhancement is related to the photoinduced charge transfer effect that takes place under the light excitation when the highest occupied molecular orbital (HOMO) and lowest
  • unoccupied molecular orbital level (LUMO) of the analyte molecules match the conduction band (CB) and valence band (VB) of the semiconductor. The EM effect can be amplified by shifting the LSPR peak to the near infrared (NIR) or visible spectral region by doping the semiconductor and, thus, increasing the
PDF
Album
Review
Published 27 May 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • well to the energy offset, ΔEH = EF − EHOMO, between the Fermi energy of the contacting electrodes and the highest occupied molecular orbital (HOMO) of the Ru complex, which we have recently determined to 330 meV [15]. This suggests that ΔEH is a relevant activation energy in ideal devices to be
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • , the partial crystal orbital Hamilton population (-pCOHP) is analyzed using the LOBSTER program through the partition of the band-structure energy into orbital–pair interactions [47][48]. Results Structural properties The geometrical structures of TMDs in the 1T′ structural polytype are illustrated in
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • been observed in semiconductor-based quantum dots (QDs) [1][2][3][4], in carbon nanotubes [5], and in molecular nanostructures [6][7][8][9]. Besides the spin, also other degrees of freedom, for example, orbital [10] or charge [11][12] can give rise to Kondo correlations. For systems with higher
  • degeneracy, for example, in the case of fourfold spin–orbital degeneracy not only spin, but also orbital pseudo-spin can be screened. Such SU(4) Kondo effect resonances have been observed in vertical QDs [10], in capacitively coupled dots [13], and in carbon nanotubes [14][15][16][17]. There is currently
  • below: where is the double dot or double orbital Anderson Hamiltonian for T-shaped geometry, which is written as: where the first term describes electrons in the electrodes and the next two terms represent electrons residing on the open (djσ) and the interacting (fjσ) dots, respectively. j enumerates
PDF
Album
Full Research Paper
Published 12 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • form of electronic excitations. The latter can involve different molecular orbitals, being of either bonding or antibonding nature. An excitation involving an antibonding molecular orbital evolves through cleavage of a particular bond on the femtosecond timescale, and the excess energy is transferred
PDF
Album
Full Research Paper
Published 13 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • can be generated from the Se p orbital in the valence band to the Sn p orbital in the conduction band. The second peak β is less intense as compared to the α peak, which can be due to the transition from Sn s to Se p orbitals as it can be seen from the DOS plot (Figure 3). However, it can be noticed
PDF
Album
Full Research Paper
Published 05 Oct 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • . In contrast, on graphene/Pt(111) the growth of molecular domains is facilitated. Electronically, the width of the highest occupied molecular orbital (HOMO) resonance is reduced by a factor of ten on graphene/Pt(111) compared to bare Pt(111) due to a reduction of the molecule–surface hybridization
  • bandgap. Hence, Yousofnejad et al. [85] found using MoS2 on Ag(111) as substrate that the HOMO of tetracyanoquinodimethane (TNCQ) is not decoupled because it is located in the MoS2 valence band, while the lowest unoccupied molecular orbital narrows but still suffers from lifetime broadening because it is
PDF
Editorial
Published 23 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • according to the alignment and response of magnetic dipoles, magnetic materials can be divided into diamagnetic, paramagnetic [31], ferromagnetic, ferrimagnetic, and antiferromagnetic. Diamagnetism of the material can be attributed to the orbital angular momentum, which is a phenomenon in which
PDF
Album
Review
Published 19 Jul 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • with adsorption to MoS2. Examples of the charge density differences are shown in Figure S1 and Figure S2 of Supporting Information File 1, with some additional discussion in section S1.4. Analysis of DOS plots shows that the Mo d-orbital or the S p-orbital contributions are largely unaffected by adatom
  • adsorption. The metal d-orbital contribution increases for both Co and Ru as more adatoms are added, causing the total DOS to become increasingly more metallic compared to bare MoS2, which is a semiconductor. Metal d-orbital states appear in the bandgap for as little as a single adatom. These increase in
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • unoccupied molecular orbital (LUMO) or conduction band (CB), while holes remain in the highest occupied molecular orbital (HOMO) or valence band (VB). Second, the electron–hole pairs are transferred to the surface through thermodynamic driving forces and are captured by H+ and a sacrificial electron donor
PDF
Album
Review
Published 30 Jun 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • performed by applying a Prevac setup equipped with a Scienta R4000 hemispherical analyzer (pass energy of 200 eV) and a monochromatic X-ray tube (Al Kα of 1486.7 eV). The full width at half maximum (FWHM) of the 4f7/2 Au line measured under the same experimental conditions was 0.6 eV. The O 1s orbital, Al
PDF
Album
Full Research Paper
Published 28 Jun 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • might become possible between particular atoms of substrate and adsorbate. For example, for many CoPc and CoPcF16 interfaces to noble metals, the interfacial interaction is governed by a local interaction between the Co 3dz2 orbital and states of the metal substrate [38][39][40]. Thus, the selected
  • from 0.8 to 0.9 eV for N 1s and C 1s, respectively. Such a broadening might be ascribed to adsorption at inequivalent adsorption sites or other kinds of disorder, which may result in a statistical distribution of orbital energies [59]. Also visible is a shift of the monolayer N 1s and C 1s core level
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • -hybridized lone pair of the carbene carbon atom, which has a strong σ-donor capability [45]. Moreover, the presence of back donation of π electrons into the empty pz orbital of the carbene carbon atom further strengthens the C–Au bond [45]. Such features hint at a strong organometallic bond that precludes
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

TiOx/Pt3Ti(111) surface-directed formation of electronically responsive supramolecular assemblies of tungsten oxide clusters

  • Marco Moors,
  • Yun An,
  • Agnieszka Kuc and
  • Kirill Yu. Monakhov

Beilstein J. Nanotechnol. 2021, 12, 203–212, doi:10.3762/bjnano.12.16

Graphical Abstract
  • aqueous conditions [13]. Theoretical studies were not only performed for neutral W3O9 clusters but also for their oxygen-deficient and anionic derivatives. Hereby, an energetic stabilization caused by a significant d-orbital aromaticity was found for [W3O9]− and [W3O9]2− [14], which is an indication of an
PDF
Album
Full Research Paper
Published 16 Feb 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • medium without UCNPs were used as controls. Then, 50 µL of MTT at 1 mg/mL in PBS was added to each well and the cells were incubated for another 4 h at 37 °C in 5% CO2. Afterward, 150 µL of DMSO was added to each well and the plates were shaken in the dark using an orbital shaker (Mini Shaker, Kisker
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Kondo effects in small-bandgap carbon nanotube quantum dots

  • Patryk Florków,
  • Damian Krychowski and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2020, 11, 1873–1890, doi:10.3762/bjnano.11.169

Graphical Abstract
  • different types. Full spin–orbital degeneracy might be recovered at zero field and, correspondingly, the SU(4) Kondo effect sets in. We point out the possibility of the occurrence of electron–hole Kondo effects in slanting magnetic fields, which we predict to occur in magnetic fields with an orientation
  • diameter and depend on the chiral angle. Small gaps are reflected in nonlinear dispersion curves and consequent drastic changes of orbital effects induced by magnetic fields. The behavior in magnetic fields is distinctly different than in wide-bandgap nanotubes. The field dependencies are determined not
  • only by the response of orbital and spin magnetic moments, as in the case of large gaps. They also crucially depend on the value of the bandgap and the gate voltage. Details of the band structure are decisive for the response on the field. The degeneracy recovery lines plotted in the plane of magnetic
PDF
Album
Full Research Paper
Published 23 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • specific discharge capacity of the best sample was 27.14 mAh·cm−2 at a stable discharge voltage of 2.75 V. The hybridization between the d-orbital of Ni and s and p-orbitals of carbon in NiCx, formed at 900 °C, enhanced the electrocatalytic performance due to the synergistic effect between these components
  • ]. The hybridization between the d-orbital of the transition metal and s- and p-orbitals of carbon effectively stretch the d-band structure of the transition metal. This results in a similar d-band of PGMs, which makes these metal carbides promising candidates to replace PGM-based ORR and OER catalysts
  • towards ORR. The enhanced performance of NiFe-PBA/PP-900 was due to several reasons. The first reason is the hybridization between the d-orbital of Ni and s- and p-orbitals of carbon in NiCx formed at 900 °C, which yielded NiFeC containing NiFe alloy and NiCx and exhibited a superior electrocatalytic
PDF
Album
Full Research Paper
Published 02 Dec 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • -orbitals and angular-electron p-, d-, and f-clouds. The electronic distribution density of each orbital is calculated according to its own formula: where ρA(k) are radial functions; Sij is the potential shielding function; and rijα is component α from the distance vector between atoms α,β,γ = x,y,z. The
PDF
Album
Full Research Paper
Published 24 Nov 2020
Other Beilstein-Institut Open Science Activities