Search results

Search for "photoreduction" in Full Text gives 28 result(s) in Beilstein Journal of Nanotechnology.

Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

  • Weiying Zhang,
  • Yuexiang Li,
  • Shaoqin Peng and
  • Xiang Cai

Beilstein J. Nanotechnol. 2014, 5, 801–811, doi:10.3762/bjnano.5.92

Graphical Abstract
  • ; graphene oxide; H2 evolution; photocatalysis; photoreduction; sp2 conjugated domains; Introduction Hydrogen is an efficient and green energy carrier. Photocatalytic water splitting into hydrogen by means of solar energy and semiconductor photocatalysts is a environmentally friendly way to produce storable
  • -hybridization in the GO layer. As a result, the conductivity of GO decreases greatly compared with that of graphene. Amongst various methods for the reduction of GO to form RGO, photoreaction (photoreduction) is “green” without any toxic chemical reagents. Moreover, it is easy to control the degree of reduction
  • processes can be described by the following reactions. The formed RGOx− can reduce PtCl62− at the zigzag edges of the RGOx. Figure 9C shows the Pt nanoparticles deposited on the surface of RGO24 by an in situ photoreduction of H2PtCl6 with EY sensitization. It clearly displays the uniform Pt aggregated
PDF
Album
Full Research Paper
Published 06 Jun 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • microrods, by photoreduction of Ag ions onto the surface of the ZnO microrods prepared through a solvothermal-assisted method, which showed enhanced sun light active photocatalytic activity. In this paper, we report the synthesis of Ag–ZnO hybrid plasmonic nanostructures by a two-step facile wet chemical
  • method involving the trisodium citrate assisted photoreduction of Ag ions onto the surface of ZnO nanostructures, prepared by a facile wet chemical method. The effects of citrate concentration and Ag nanoparticle loading on the photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures towards sun
  • peaks in the diffraction patterns clearly indicates the formation of crystalline Ag nanoparticles by photoreduction onto ZnO nanostructures. No extra peaks related to any impurity or silver oxides were observed, which confirms that the as-synthesized products are pure wurtzite ZnO and Ag–ZnO hybrid
PDF
Album
Full Research Paper
Published 15 May 2014

High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation

  • Leny Yuliati,
  • Melody Kimi and
  • Mustaffa Shamsuddin

Beilstein J. Nanotechnol. 2014, 5, 587–595, doi:10.3762/bjnano.5.69

Graphical Abstract
  • surface might be increased via photoreduction during the reaction. As a result, the photocatalytic activity of the Ag(0.01)-doped Cd0.1Zn0.9S sample increased within the reaction time. The average hydrogen production rate from both runs was determined to be 3.91 mmol/h and the value was 1.7 times better
PDF
Album
Full Research Paper
Published 07 May 2014
Other Beilstein-Institut Open Science Activities