Search results

Search for "sensor" in Full Text gives 438 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • glucose oxidase, suggesting the use of this phenomenon as a colorimetric sensor for bioanalysis [49]. This color transition is an important observation since nanoceria degradation will likely result in the change in oxidation state of surface cerium ions from Ce4+ to Ce3+. Results and Discussion Nanoceria
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • 99.995% methane at a fixed rate of 0.4 slpm, controlled by an OmronTM flow sensor. The outer tube supplies the oxidizer gases, a mixture of 99.9% oxygen at a fixed rate of 0.7 slpm and 99.9% nitrogen at a fixed rate of 3.0 slpm, controlled by metering valves equipped with HoneywellTM sensors. The flame
PDF
Album
Full Research Paper
Published 21 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • of the surface cross section was achieved thanks to the wide light spot. Finally, the power density was 750 W·m−2 as measured by a thermal power sensor S401C from Thorlabs, which has a flat spectral response in the white-light range of wavelengths. This relatively low power density allows one to
PDF
Album
Full Research Paper
Published 14 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • diffraction were used to characterize the morphological and structural properties of GQDs. An electrochemical sensor was developed by drop casting GQDs on a glassy carbon electrode (GCE). The sensor detects the organophosphate pesticide malathion in a selective and sensitive manner. Using cyclic voltammetry
  • spectroscopy; electrochemical sensor; graphene quantum dots; malathion; Introduction Global population growth makes food production more challenging, and pesticides are therefore used in agriculture in greater quantities than in the past to maintain and increase crop yields [1][2]. Pesticides containing
  • the possibilities of developing sensing devices based on graphene quantum dots in recent years [20][21][22][23]. In 2015, Dong et al. prepared an oxime-based sensor via attaching pralidoxime on a GQDs-modified GCE for detecting the organophosphorus pesticide fenthion [24]. In 2018, Sahub et al. worked
PDF
Album
Full Research Paper
Published 09 Jun 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • equivalent circuit parameters obtained by fitting impedance spectra. The new investigation data can be useful to predict the behavior of nanostructured CuO in humid environments, which is favorable for advancing technology of nanowire-based systems suitable for sensor applications. Keywords: CuO
  • ; electrochemical impedance spectroscopy; humidity; nanowire; sensor; Introduction Semiconductor metal oxide nanomaterials have demonstrated a great potential for integration in a variety of devices, such as gas and humidity sensors, nanoelectronics, and low-power thermoelectrical generators [1][2][3][4][5][6
  • of |Z| within one order of magnitude at similar RH (Figure 3b, dashed lines). Such variation of Z with the temperature is consistent with a previous report on a CuO sensor [18], where the measured resistance of a nanowire network system decreased by five times at a temperature rise from 20 to 80 °C
PDF
Album
Full Research Paper
Published 05 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • , high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed. Keywords: antibiotics sensing; endocrinal disorders; fluorescent sensor; hormones sensors; luminescent sensor; MOF nanohybrids
  • , in situ analyte monitoring, and potential miniaturization. Portability, miniaturisation, and fast signal responses are just a few of the breakthroughs in sensor design made possible by nanomaterials. Nanomaterials are becoming a key component of the analytical procedures required for pharmaceutical
  • used to define sensor sensitivity (Figure 4). The minimum analyte concentration that can be reliably and precisely quantified is expressed by the term “limit of quantification” (LOQ). For estimation, a level of 10·Sb/S is recommended. The kinetics of both chemical recognition and signal transduction
PDF
Album
Review
Published 01 Jun 2023

Carbon nanotube-cellulose ink for rapid solvent identification

  • Tiago Amarante,
  • Thiago H. R. Cunha,
  • Claudio Laudares,
  • Ana P. M. Barboza,
  • Ana Carolina dos Santos,
  • Cíntia L. Pereira,
  • Vinicius Ornelas,
  • Bernardo R. A. Neves,
  • André S. Ferlauto and
  • Rodrigo G. Lacerda

Beilstein J. Nanotechnol. 2023, 14, 535–543, doi:10.3762/bjnano.14.44

Graphical Abstract
  • differentiate between the liquids. We show that the proposed liquid sensor can classify different liquids, including organic solvents (acetone, chloroform, and different alcohols) and is also able to differentiate low concentrations of glycerin in water (10–100 ppm). We have also investigated the influence of
  • two important properties of the liquids, namely dielectric constant and vapor pressure, on the transduction of the MFC-MWCNT sensors. These results were corroborated by independent heat flow measurements (thermogravimetric analysis). The proposed MFC-MWCNT sensor platform may help paving the way to
  • rapid, inexpensive, and robust liquid analysis and identification. Keywords: carbon nanotube; electronic tongue; fibrillated cellulose; liquid sensor; Introduction The development of a new generation of smart sensors that allow for the monitoring of industrial processes in real time and for wearable
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

A mid-infrared focusing grating coupler with a single circular arc element based on germanium on silicon

  • Xiaojun Zhu,
  • Shuai Li,
  • Ang Sun,
  • Yongquan Pan,
  • Wen Liu,
  • Yue Wu,
  • Guoan Zhang and
  • Yuechun Shi

Beilstein J. Nanotechnol. 2023, 14, 478–484, doi:10.3762/bjnano.14.38

Graphical Abstract
  • , transparent, and portable wrist strap sensor and a mechano-based transductive sensor in 2017 and 2018, respectively [16][17]. They have good application prospects in healthcare. In 2020, Xue et al. reported a bismuthene-enabled fluorescence quenching biosensor to detect microRNA, which is relevant to the
  • resonance platform will further contribute to the field of biomedical sensors. We also studied the sensing performance of our proposed MIR FGC when it worked as a sensor rather than a coupler, as shown in Figure 6. When RI increases from 1 to 1.04, the peak of coupling efficiency shows a redshift from
  • 6877.8 nm to 6917.1 nm. The RI sensitivity is 980.7 nm/RIU obtained from a linear fit of the peak wavelength and RI, as shown in Figure 6b. The sensitivity is twice as large as that in [20]. Furthermore, the proposed sensor is a full-etch structure based on Ge-on-Si, which can be achieved by a single
PDF
Album
Full Research Paper
Published 06 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • ). Characterizations The morphology and structure of the catalysts were characterized using a scanning electron microscope (FEI QUANTA FEG 250) with an energy-dispersive X-ray (EDX) sensor. X-ray absorption spectroscopy (XAS) was performed at the 04BM beamline at the National Synchrotron Radiation Centre SOLARIS [41
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • advantages, namely high sensitivity to the electrostatic force gradient, high detection sensitivity using a cantilever with a weak spring constant at the first resonance, ease of implementation in adding FM-AFM, and no need to enhance the bandwidth of the cantilever deflection sensor. FM-KPFM is used to
  • concentrations of the n, p, and n+ regions are 1 × 1015 cm−3, 2 × 1016 cm−3, and 5 × 1019 cm−3, respectively. As a force sensor, a PtIr-coated conductive cantilever (NanoWorld: NCHPt) was used. The resonance frequency f0, force constant k, and Q of the PtIr-coated cantilever were 292.68 kHz, 42 N/m, and 8406
PDF
Album
Full Research Paper
Published 31 Jan 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • Ioan Ignat Bernhard Schuster Jonas Hafner MinHee Kwon Daniel Platz Ulrich Schmid Institute of Sensor and Actuator Systems, TU Wien, Gußhaustraße 27–29, 1040 Vienna, Austria 10.3762/bjnano.14.13 Abstract Atomic force microscopy (AFM) is highly regarded as a lens peering into the next discoveries
PDF
Album
Full Research Paper
Published 19 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • consists of a log-periodic microwave antenna [39] with a broad frequency range of ca. 15–700 GHz. In the center, there is a nanoscale JJ sensor, shown in Figure 6b. The detector is made of a Nb film (70 nm thick), using a fabrication technique similar to that described in [28]. The antenna is patterned
  • using photolithography and reactive ion etching. The JJ sensor with variable thickness and a width of ≈100 nm is made by Ga+ focused ion beam etching. The JJ is made small in order to increase its resistance Rn to approx. 50 Ω, which is needed for a good impedance matching with the antenna. In order to
  • characteristics from (a). The peak represents the resonant step. It reduces with decreasing N and is not visible for N = 106 (lower panel) below the threshold number of JJs. (a) Optical image of a superconducting detector with a log-periodic microwave antenna. (b) SEM image of a nanoscale sensor junction (false
PDF
Album
Full Research Paper
Published 28 Dec 2022

From a free electron gas to confined states: A mixed island of PTCDA and copper phthalocyanine on Ag(111)

  • Alfred J. Weymouth,
  • Emily Roche and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2022, 13, 1572–1577, doi:10.3762/bjnano.13.131

Graphical Abstract
  • of the sample preparation is available in Supporting Information File 1. A qPlus AFM/STM sensor [21] with an etched W-tip was used. Tunneling spectoscopy data (dI/dV data) were acquired with a lock-in amplifier included in the control electronics (Nanonis from SPECS GmbH). The AC signal had a
  • frequency of 879 Hz, and we used a modulation voltage amplitude of 20 mV after ensuring that spectra did not change in shape with modulation voltages between 5 and 20 mV. The bias voltage and AC signal were applied to the sample. AFM data were acquired in frequency-modulation mode [22] with a sensor
  • oscillation amplitude of 50 pm. The resonance frequency of the sensor is 38819 Hz, which is much higher than the modulation voltage used for spectroscopy data. Results and Discussion Figure 1a is an AFM image of an island showing both PC and P2C phases. The internal structure of the molecules appears similar
PDF
Album
Supp Info
Letter
Published 22 Dec 2022

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • mechanical sensor into an endoscopy pill, which would save or transmit its mechanical data to a computer for further analysis. Endoscopy capsules for optical imaging of the digestive tract already exist [30]. A schematic for a proposed enhancement to this type of device is shown in Figure 2. In addition to
  • optical imaging, the device could be equipped with one or more piezoelectrically excited membranes coupled with a sensing mechanism, such as an AFM cantilever or other type of mechanical sensor (similar stand-alone developments already exist [31][32]). The mechanical response of the membrane could be
PDF
Album
Perspective
Published 09 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • hydrochloride (EDC) were used to covalently link DNA and oligonucleotides to a carboxylate-terminated alkanethiol self-assembled monolayer (SAM) performed on a gold electrode (AuE) [70]. The Lisdat group described a label-free impedimetric sensor for the detection of hybridisation events which is based on short
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • controlling the cavity length of the structure. Further, the two types of BIC can be converted into quasi-BIC (QBIC) by either changing the spacing between adjacent gratings or changing the distance between the upper and lower gratings. The simulation results show that the dual-band high-performance sensor is
  • ]. Particularly, the QBIC sensor enables highly accurate detection of environmental changes by reading variations in the spectrum. However, numerous research works have focused on the BIC mechanism of single-mode resonance [26][28], which may limit its application. In this work, we proposed a double-layer
  • index of the surrounding medium. In this section, we will investigate the sensing performance of the proposed structure through the variation of two key structural parameters (α and h). Besides the Q-factor, the sensitivity (S) and FOM are also two important parameters for a refractive index sensor
PDF
Album
Full Research Paper
Published 25 Nov 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • Effect, the capability to keep a stable air layer when submerged under water. Such air layers are of great importance, e.g., for drag reduction (passive air lubrication), antifouling, sensor applications or oil–water separation. Some biological models, e.g., the floating fern Salvinia or the backswimmer
PDF
Album
Full Research Paper
Published 21 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • , providing new opportunities for many fields. In practical applications, due to the surface structure of colloidal fibers, these fibers can be used as SERS sensor detection for trace detection of BPA. Although colloidal probes have many excellent properties, there are some problems in calibrating such probes
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • sensing systems for enantiomers, which still remains challenging. Quartz crystal microbalance (QCM) is a well-known mass-sensor technique capable of recording changes in nanogram or even picogram levels in both gas and liquid phases [20][21]. The sensing of mass changes is based on the oscillation
  • induced by external stimulus. As there are almost no limitations for the receptor layers in QCM sensor systems, various materials and nanostructures have been developed for constructing sensing layers on the surface of the electrode. The sensing process may also be implemented in the liquid and gas phases
  • in the pharmaceutical industry. It has been taken as a model molecule to verify the “proof-of-principle” concept for chiral recognition [28]. Kim and co-workers fabricated ʟ-phenylalanine (ʟ-Phe)-modified QCM sensor and used vapor diffusion molecular assembly (VDMA) to study the chiral adsorption of
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • generate an electrical signal up to 10 mV and successfully applied it to a flow sensor. In 2008, Zhao et al. prepared a single-walled carbon nanotube generator [7], which imparted momentum to the water in the carbon nanotubes by applying a voltage to both ends of the carbon nanotubes, such that the other
  • for green energy in the near future. MEGs are also widely used in sensors [54]. For example, a moisture-eletric touch sensor array can provide uniform and sensitive touch feedback (Figure 10e). As shown in Figure 10f, a breath detector can monitor different breathing patterns, including short breaths
  • Clearance Center, Inc. This content is not subject to CC BY 4.0. (e) Touch sensor. (f) Breath detection sensor, different breathing modes yield different output voltages. Figure 10e,f were reproduced from [54], Shen, D. et al., “Self-Powered Wearable Electronics Based on Moisture Enabled Electricity
PDF
Album
Review
Published 25 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • tuning fork force sensor became increasingly popular. In comparison to microfabricated cantilevers, the more macroscopic tuning forks, however, lack sensitivity, which limits the measurement bandwidth. Moreover, multimodal and multifrequency techniques, such as those available in cantilever-based AFM
  • macroscopic wire tip to the free prong. Compared to the typically used microscopic AFM cantilevers, the tuning fork sensor has a rather high stiffness, k ≈ 2 kN/m. This facilitates AFM operation with small oscillation amplitudes (A < 100 pm) because a snap-to-contact or instabilities of the phase-locked loop
  • (PLL) driving the tuning fork oscillation do not occur. Furthermore, the tuning fork AFM does not require an extra deflection sensor such as the beam deflection or fiber-optical systems used for cantilever-based AFM, which substantially reduces instrumentation complexity. In fact, every existing
PDF
Album
Full Research Paper
Published 11 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • dual fluorescence sensor for both Hg2+ ions and chemet drugs [23]. An acid oxidation approach was applied to synthesize nanosized fluorescent CDs of various colors by using Ananas comosus without any passivating agent by Gupta et al. The synthesized CDs showed three emission peaks at 438, 516, and 543
  • as a dual sensor for tetracycline and ʟ-lysine. The fluorescence of CDs is quenched by adding tetracycline and regained by introducing ʟ-lysine [18]. Palmyra leaves were utilized by Athinarayanan et al. for the production of CDs. The cellular toxicity of the CDs was analyzed, and the CDs were found
  • to synthesize CDs via hydrothermal route. The reported CDs showed good selectivity for Cd2+ ions with a wide linear range and limit of detection of 0.01–8 μM and 0.29 nM, respectively [72]. Chaudhary et al. reported CDs using roasted gram as a green precursor, which act as a humidity sensor. Two
PDF
Album
Review
Published 05 Oct 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • substrate material, a metal spring (springs with spring constants of 618 N/m and 539 N/m were used) and a fibre-optic sensor (Figure 3A). The piezo drive moves the spring down to load and up to unload the sample. A shortened glass capillary (5 µL micropipet Blaubrand® IntraEND, Brand GmbH & Co. KG, Wertheim
  • . BM, bee mandible (optional); FL, fluid; FOS, fibre-optic sensor; GC, glass capillary; GS, glass slide or other substrate material; MM, micro-manipulators; MR, mirror; MS, metal spring; PS, propolis sample. Figure 3A was adapted and Figure 3B, D, and E were reproduced from [1] (© 2021 Saccardi
PDF
Album
Full Research Paper
Published 14 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • average behavior of this group of sensing devices with respect to protein addition. We evaluated the sensor responses as percentage changes in graphene resistance (ΔRSD) at VG = 0.2 V caused by aptamer–protein binding. For more details on how the variations in graphene resistances were measured, see Table
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Numerical modeling of a multi-frequency receiving system based on an array of dipole antennas for LSPE-SWIPE

  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Dmitrii A. Pimanov,
  • Ekaterina A. Matrozova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 865–872, doi:10.3762/bjnano.13.77

Graphical Abstract
  • the working temperature of the 3He cryostat used for the LSPE project. One of main candidates for LSPE-SWIPE is a transition-edge sensor (TES) with a spiderweb antenna [2][3]. For the OLIMPO mission, kinetic inductance detectors (KIDs) were used [4]. We propose to use cold-electron bolometers (CEBs
PDF
Album
Full Research Paper
Published 01 Sep 2022
Other Beilstein-Institut Open Science Activities