Search results

Search for "dopants" in Full Text gives 86 result(s) in Beilstein Journal of Nanotechnology.

Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors

  • Tomi Roinila,
  • Xiao Yu,
  • Jarmo Verho,
  • Tie Li,
  • Pasi Kallio,
  • Matti Vilkko,
  • Anran Gao and
  • Yuelin Wang

Beilstein J. Nanotechnol. 2014, 5, 964–972, doi:10.3762/bjnano.5.110

Graphical Abstract
  • drain, respectively. A scanning electron microscope (SEM) image of the device is shown in Figure 5. The source and drain regions are heavily doped with boron, while the nanowire channel has a low-doping concentration of phosphorous. The contacts were doped by different dopants in order to form an off
PDF
Album
Full Research Paper
Published 04 Jul 2014

Resonance of graphene nanoribbons doped with nitrogen and boron: a molecular dynamics study

  • Ye Wei,
  • Haifei Zhan,
  • Kang Xia,
  • Wendong Zhang,
  • Shengbo Sang and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 717–725, doi:10.3762/bjnano.5.84

Graphical Abstract
  • discussed. A systematic study of the vibrational properties of graphene doped with nitrogen and boron is performed by means of a molecular dynamics simulation. The influence from different density or species of dopants has been assessed. It is found that the impacts on the quality factor, Q, resulting from
  • different densities of dopants vary greatly, while the influence on the resonance frequency is insignificant. The reduction of the resonance frequency caused by doping with boron only is larger than the reduction caused by doping with both boron and nitrogen. This study gives a fundamental understanding of
  • the resonance of graphene with different dopants, which may benefit their application as resonators. Keywords: dopant; graphene; molecular dynamics simulation; natural frequency; quality factor; resonance; Introduction Graphene has drawn intensive interest since its discovery in 2005 [1]. It has
PDF
Album
Full Research Paper
Published 27 May 2014

Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

  • Federico Baiutti,
  • Georg Christiani and
  • Gennady Logvenov

Beilstein J. Nanotechnol. 2014, 5, 596–602, doi:10.3762/bjnano.5.70

Graphical Abstract
  • sequence of the atomic layers. In semiconductors MBE, the ALL-MBE method is used to deposit so called “delta doped” structures [18], where the dopants are confined to a single atomic plane. Extending this approach to the field of oxide MBE, one can do “single atomic layer engineering”, precisely defining
PDF
Album
Review
Published 08 May 2014

Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

  • Kang Xia,
  • Haifei Zhan,
  • Ye Wei and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 329–336, doi:10.3762/bjnano.5.37

Graphical Abstract
  • with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or
  • impact of dopant atoms on the mechanical properties of graphene. Huge efforts are still lying ahead especially for the newly synthesized CNT–graphene hybrid structure. Therefore, in this work, we will examine the impact of different densities and species of dopants on the tensile properties of the GNHS
  • . The emphasis will be placed on Young’s modulus, E, yield strength, YS, and yield strain, YP. Computational details In order to acquire the influence of the dopants on the mechanical properties of GNHSs, the large-scale atomic/molecular massively parallel simulator (LAMMPS) [17] is utilized to carry
PDF
Album
Full Research Paper
Published 20 Mar 2014

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

  • Slawomir Boncel,
  • Sebastian W. Pattinson,
  • Valérie Geiser,
  • Milo S. P. Shaffer and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2014, 5, 219–233, doi:10.3762/bjnano.5.24

Graphical Abstract
  • ] atoms has been frequently used to enhance or tune their physicochemical properties. Among the elemental dopants, nitrogen emerges as of particular interest in electronics since N-CNTs should be characterized by a higher electrical conductivity (n-doping). Consequently, the significance of N-CNTs in a
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

Ferromagnetic behaviour of Fe-doped ZnO nanograined films

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Thomas Tietze,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2013, 4, 361–369, doi:10.3762/bjnano.4.42

Graphical Abstract
  • cobalt demonstrates only one oxidation state Co3+ whereas manganese can possess several oxidation states, namely +2, +3 and +4 [17][18]. Together with cobalt and manganese, iron is one of the most important dopants in ZnO. Similar to manganese, iron has different oxidation states (Fe2+ and Fe3+). This
  • solubility of Fe-doped ZnO are now in progress; they give comparable results and will be published elsewhere. Simple calculations performed in [4][5] showed that the drastic increase of the total solubility of Co and Mn with decreasing grain size is due to the multilayer adsorption of dopants in GBs (up to
PDF
Album
Full Research Paper
Published 13 Jun 2013

High-resolution electrical and chemical characterization of nm-scale organic and inorganic devices

  • Pierre Eyben

Beilstein J. Nanotechnol. 2013, 4, 318–319, doi:10.3762/bjnano.4.35

Graphical Abstract
  • , threading dislocations, and microtwins that affect the diffusion of dopants and the material mobility (due to scattering). When growth is performed in narrow trenches, dislocations are trapped within the confined volume (aspect-ratio trapping) and, theoretically, defect-free layers can be obtained. However
PDF
Editorial
Published 16 May 2013

Influence of diffusion on space-charge-limited current measurements in organic semiconductors

  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2013, 4, 180–188, doi:10.3762/bjnano.4.18

Graphical Abstract
  • will focus on acceptor-like traps in electron-only devices, i.e., situations where the traps are negatively charged when below the Fermi level. These negative charges will behave like p-type dopants and create a barrier for electrons. The electrons first have to diffuse over the barrier created by the
  • an electron. The rationale of using acceptor-like defects is that many organic semiconductors are known to be p-type, i.e., to have acceptor like defects, and to show improved transport after compensation of the p-type dopants with n-type dopants [8][23][26][37][38]. Because organic semiconductors
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • small reaction volume is that neither the reactor base plate nor the quartz walls of the surrounding bell jar is touched by the plasma. Major contaminations from the reactor walls were therefore avoided. Gaseous nickel and tungsten precursors - The controlled and targeted addition of dopants during
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

The memory effect of nanoscale memristors investigated by conducting scanning probe microscopy methods

  • César Moreno,
  • Carmen Munuera,
  • Xavier Obradors and
  • Carmen Ocal

Beilstein J. Nanotechnol. 2012, 3, 722–730, doi:10.3762/bjnano.3.82

Graphical Abstract
  • thickness of the film, RON and ROFF correspond to the resistance of the memristor for completely uniformly doped or undoped cases, respectively, and µ is the drift velocity of the dopants under an electric field E across the doped region in the presence of a current I(t). The switching characteristic
  • –sample contact is a factor of ~20 larger than that in region of the film closer to the substrate interface [6]. The influence of a nonuniform electric field significantly suppresses the drift of the dopants. Nonlinear dopant drift can be taken into account in the memristor simulation I–V curve by
PDF
Album
Full Research Paper
Published 06 Nov 2012

Synthesis and electrical characterization of intrinsic and in situ doped Si nanowires using a novel precursor

  • Wolfgang Molnar,
  • Alois Lugstein,
  • Tomasz Wojcik,
  • Peter Pongratz,
  • Norbert Auner,
  • Christian Bauch and
  • Emmerich Bertagnolli

Beilstein J. Nanotechnol. 2012, 3, 564–569, doi:10.3762/bjnano.3.65

Graphical Abstract
  • adding HCl to the growth atmosphere [18]. For such VLS grown NW dopants can be introduced either through particular catalyst particles, such as In [19], Al [20] or Ga [21], which become partly incorporated into the NW during growth and thus work as p-type dopants themselves, or by adding a small amount
  • . Such epitaxial NWs grow preferentially along the [112] direction, like their B-doped counterparts. The NWs themselves are rod-like, exhibit good crystallinity, and feature no observable defects or stacking faults. To test the activation of the dopants in the NWs, electrical characterization was
PDF
Album
Full Research Paper
Published 31 Jul 2012
Other Beilstein-Institut Open Science Activities