Search results

Search for "kinetics" in Full Text gives 426 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • /mL and 3.0 μg/mL of the nanocatalyst. For the reaction kinetics, the plots of ln(A0/At) values versus reaction time show good linear correlation with high determination coefficients for the degradation of the organic dyes, indicating a pseudo-first-order reaction (Figure 7E and Figure 8E
  • NaBH4 solution (0.05 M) was introduced into the cell. Using a UV–vis spectrophotometer, the catalytic degradation of the contaminants was monitored at ambient temperature in 2 min intervals. The reaction kinetics were determined by measuring the reduction in absorption intensity at the corresponding
  • (B), and 3.0 μg/mL (C); plots of first-order kinetics (D) and rate constants (E) for the catalytic degradation of methyl orange. UV–vis spectra of the catalyst at concentrations of 1.0 μg/mL (A), 2.0 μg/mL (B), and 3.0 μg/mL (C); plots of first order kinetic (D) and rate constants (E) for the
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • higher specific capacity (432.3 mAh·g−1) of Ge@C-iM750 indicates an improvement in the kinetics of lithium storage reactions, even under the harshest condition of 5000 mA·g−1. The Nyquist plots of all electrodes (Figure 5c) contain a semicircle in the high-to-medium frequency range and a sloping tail in
PDF
Album
Full Research Paper
Published 26 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • cyclic voltammetry results of the GQDs/GCE electrode to study the interfacial kinetics from 20 mV·s−1 scan rate to 400 mV·s−1 scan rate. The increase in the square root of scan rates led to a linear increase in peak current for anodic and cathodic reactions, as shown in Figure 7c. For scan rates of 20 to
PDF
Album
Full Research Paper
Published 09 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • File 1 shows photodegradation experiments of methylene blue irradiated by ultraviolet light. The photodegradation rate of methylene blue was quantitatively estimated by pseudo-first-order kinetics. The reaction rate constants (k) are 0.01625, 0.01882, and 0.01258 min−1 for the samples calcinated at 300
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • used to define sensor sensitivity (Figure 4). The minimum analyte concentration that can be reliably and precisely quantified is expressed by the term “limit of quantification” (LOQ). For estimation, a level of 10·Sb/S is recommended. The kinetics of both chemical recognition and signal transduction
  • materials as potent analytical tools because of their advantages in terms of portability, affordability, high sensitivity, and ease of fabrication. Through functions such as active large surface area, rapid electrode kinetics, and efficient catalytic activity, the amplification of electrochemical signals
PDF
Album
Review
Published 01 Jun 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • process is primarily the oxygen evolution reaction (OER) due to its sluggish kinetics resulting in a high overpotential and low efficiency [4]. To overcome this problem, robust anode electrode catalyst materials are required. Since the Ru- and Pt-based catalysts used so far for OER are made using limited
  • determined to be 99 mV·dec−1, which is in agreement with the literature [36][37]. A lower Tafel slope was observed for nickel coated with GO, indicating faster kinetics towards the OER compared to the bare substrate [38]. The slopes for NiFe (41 mV·dec−1) and CoNiFe (42 mV·dec−1) were similar, which
  • transport. The latter can also be confirmed by the Tafel slope analysis. The slopes for NiFe(300 mC)-GO begin to rise quickly, which indicates a change in the OER kinetics due to the slowed exchange of ions and electrons. The connection of GO with NiFe resulted in a slight increase of the value of Cdl/ECSA
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • nanomedicine has yielded several relevant advancements since its beginnings in the early 2000s. The dissolution kinetics of poorly soluble drugs have been improved by the production of drug nanocrystals, enabling continuous drug release. Lipid molecular structures have been manipulated at the nanoscale to
  • (non-adsorbed) surfactant can be in the form of micelles that coexist with the nanoemulsion droplets. The kinetics of surfactant adsorption during droplet formation, droplet coarsening, as well as uncertainties in the estimation of as could also explain the divergences between calculated and
  • phase, but it is always smaller (ca. 25 nm from TEM) than the precursor nanoemulsion droplets, regardless of the PLGA concentration. DXM can be encapsulated with efficiencies higher than 88% for PLGA concentrations in the 0.5–4 wt % range. The drug release kinetics seems to be slower as the PLGA
PDF
Album
Review
Published 13 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • : Heterojunctions, which are the interfaces between two different semiconductors, increase the charge carrier separation efficiency with increased kinetics and strong redox ability. This enhances the photocatalytic capabilities of photocatalysts [101][119][156][157][158][159][160][161]. Depending on how the
  • concentrations of contaminants. Both the effectiveness and kinetics of the photocatalytic processes are significantly influenced by the initial concentration of pollutants. Both direct and inverse relationships between the initial concentrations of the pollutants and the degree of their removal have been
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • combination with NH3. The reaction kinetics were monitored via measuring the optical density (OD) with UV–vis spectroscopy and the conversion of substrate via gas chromatography coupled with mass spectroscopy (GC–MS). Size and net surface charge distribution of the particles were determined with dynamic light
  • scattering (DLS). The efficiency of the self-assembly was evaluated with scanning electron microscopy (SEM), UV–vis spectroscopy, and qualitative visual demonstration. Results and Discussion SiBP alone as catalyst Reaction kinetics were studied via OD measurements of the particles and GC analysis of
  • ., Waltham, MA, USA) was used for the quantitative analysis of GC–MS data. The reaction rate of TEOS hydrolysis was calculated according to first-order reaction kinetics [43]. Particle size and zeta potential measurements Measurements were performed using a Zetasizer Nano ZS90 (Malvern Panalytical Ltd
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • nanocarrier was encapsulated with a cancer cell membrane, which endowed the NPs with the ability to target tumor tissues and mediate tumor killing through chemical kinetics [83]. In addition, further anticancer effects can be exerted by the ginsenoside Rh2, which was delivered by nanocarriers and inhibited
PDF
Album
Review
Published 27 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • silicide, and a cross-sectional view of Ni silicide is given in Figure 4c based on reported works [44][48][56]. The elongation process of the symmetric NiSi2 clusters is mainly governed by the growth kinetics [44][57][58]. Conclusion In the present work, nanoflowers with a core particle and surrounding
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • with compounds generating reactive oxygen species (ROS) or blocks DNA replication and protein action (enzymes), thereby leading to cell death. The increased growth inhibition observed for C. albicans compared to E. coli could be explained in part by the difference in kinetics of silver penetration into
  • impact of the M63G environment on microorganism susceptibility is plausible, it is not currently possible to confirm that the culture medium played a significant role in the observed difference of inhibition kinetics. Plate diffusion assay Functionalized and uncoated textiles were placed on a microbial
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • (Figure 2d and Figure 2h). The EDX analysis of the samples dealloyed in HCl confirms the hypothesis related to the kinetic of dealloying (Figure 4a). In Figure 4a it can be seen that the dealloying kinetics is faster for a higher amount of silver in the initial film with a faster decrease of aluminum
  • content. However, this observation is not consistent with the previously reported studies on dealloying, revealing that the dealloying kinetics should be faster for samples with a lower amount of noble metals [24]. As previously shown for the case of the Ag–Al alloy dealloyed in HCl, the dealloying leads
  • of dealloying suggests that the dealloying kinetic is different on the substrate. Due to the initial morphology, the AgCl layer on every column breaks down after different times in the HCl solution. The discrepancy of kinetics observed here compared to that reported in the literature can be explained
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • patches. The kinetics of the assembly in a 7:3 (vol/vol) THF/salty water mixture was more deeply investigated. Figure 4d shows that the incubation of 1-PSN with a PPSR of 0.57 led to the formation of dimers, trimers, and larger aggregates, whose number fraction after 10 days of incubation was 10%, 8%, and
PDF
Album
Full Research Paper
Published 06 Jan 2023

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • , as shown in Figure 5b,d. Therefore, the degradation kinetics are consistent with the pseudo-first-order kinetic model (R2 > 0.95). The results demonstrate that the photocatalytic processes were very efficient and more efficient than degradation by ozonolysis. The values of the degradation rate
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • kinetics studies of the nanoparticular drug delivery system were carried out. It can be a detailed source and inspiration for possible future research in this area. Results and Discussion In vitro characterization of DCX-PLGA NPs and CS/DCX-PLGA NPs Mean particle size, polydispersity index (PDI), and zeta
  • surface have similar charge, resulting in repulsive forces between NPs and mucus layer [55]. Release kinetics studies There are several factors influencing the fate of therapeutical formulations. Release kinetics models are directly relevant for the efficacy and safety of the drugs [56]. Data obtained
  • , first order, Higuchi, Korsmeyer–Peppas, Peppas–Sahlin, Hopfenberg, Baker–Lonsdale, or Weibull model). Many studies in this area only evaluate the in vitro release profile, but examining possible models in release kinetics, especially in oral drug delivery systems, is valuable for a clearer
PDF
Album
Full Research Paper
Published 23 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • MBN-80 by providing in-depth information on the charge transfer kinetics, and the obtained Nyquist plots are depicted in Figure 6a. The charge transfer resistance at the electrode–electrolyte interface can be interpreted through the arc radius from the Nyquist plot [30]. The lower Nyquist radius for
  • the presence of 0.05 M H2O2. The photocatalysis process followed a pseudo-first-order reaction kinetics with a rate constant (K) of 0.016 min−1 (for the aqueous phase MB) and 0.0204 min−1 (for the aqueous phase MB in the presence of H2O2) with a TOC removal of 54.55% and 70%, respectively. On the
PDF
Album
Full Research Paper
Published 22 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • generation of Bi2WO6. It has been observed that the newly generated Bi2WO6 has a greater BET surface area and superior charge transfer kinetics. These properties point to an increase in photocatalytic activity. Other Bi-based hollow hierarchical structures, such as BiVO4, have the potential to be synthesized
  • high-performance photocatalysts on the market. CdS is a more ecologically friendly alternative to other photocatalysts [113]. To improve the efficiency of photocatalytic water breakdown from the perspective of catalytic reaction kinetics, one method that is both practical and effective is to design
  • photocatalysts in such a way as to change the processes involved in photocatalytic reaction kinetics. For example, Cao et al. reported the fabrication of a bismuth-based Bi/Bi2MoO6/TiO2 nanocomposite photocatalytic material using a facile one-step solvothermal technique [114]. To reduce metal Bi on the surface
PDF
Album
Review
Published 11 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • enantiospecific adsorption on a ferromagnetic Ni surface was proven to arise from the adsorption kinetics rather than from thermodynamic stabilization. The adsorption rate of ᴅ-Cys and ʟ-Cys onto a ferromagnetic substrate showed a significantly different behavior according to the magnetic field direction and
PDF
Album
Review
Published 27 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • a constant controlled rate according to zero-order kinetics [79][80][81]. Drug-loaded soft contact lenses can be classified as non-dissolving implants [82][83]. Satisfactory results are also obtained with in situ gelling liquid implants [84][85] or film forming liquids [86][87][88]. In addition to
PDF
Album
Review
Published 24 Oct 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • ][13][14]. In particular, the ORR in alkaline environments with faster kinetics and lower over potential requires stable transition metal-derived electrocatalysts [15]. The major hurdles for Pt-based ORR electrode catalysts in alkaline media include high cost, low operational stability, fuel crossover
  • effects, and carbon monoxide poisoning [16][17]. The electrocatalytic reactivity (mechanism and kinetics) of silver has similarities to that of Pt regarding the ORR performance, with considerably high onset potential, half-wave potential, current density, and number of transferred electrons. The important
  • -workers reported the ORR activity of Ag–Co NPs dispersed on Vulcan XC72 carbon by incipient-wetness impregnation [22]. In general, the addition of a third metal to a bimetallic composition is considered to be an effective method to augment the absorption energy and improve the kinetics of the ORR [23]. Gu
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants

  • Chao-Wei Huang,
  • Shu-Yu Hsu,
  • Jun-Han Lin,
  • Yun Jhou,
  • Wei-Yu Chen,
  • Kun-Yi Andrew Lin,
  • Yu-Tang Lin and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 882–895, doi:10.3762/bjnano.13.79

Graphical Abstract
  • . Therefore, we believed there would be a benefit of doping Ni to improve the photodegradation. In Figure 9, by taking the negative natural logarithmic value of C/C0, it was observed that all the degradation trends were in line with first-order kinetics: where k was the rate constants of MB degradation
  • . LaFe0.7Ni0.3O3 had a larger crystal diameter and higher specific surface, which improved the separation of photogenerated charge carriers and the efficiency of the surface reaction. For comparison, the second-order kinetics analysis was also conducted for the samples prepared at pH 0 in Table 1. However, the R2
  • values were too low to represent their kinetic model. Therefore, 1st order reaction kinetics was more suitable for describing the kinetic model of LaFexNi1−xO3. MB removal test under different conditions using LaFe0.7Ni0.3O3 prepared at pH 0 The pH value of the solution was a strong effect on
PDF
Album
Supp Info
Full Research Paper
Published 05 Sep 2022

Gelatin nanoparticles with tunable mechanical properties: effect of crosslinking time and loading

  • Agnes-Valencia Weiss,
  • Daniel Schorr,
  • Julia K. Metz,
  • Metin Yildirim,
  • Saeed Ahmad Khan and
  • Marc Schneider

Beilstein J. Nanotechnol. 2022, 13, 778–787, doi:10.3762/bjnano.13.68

Graphical Abstract
  • internalization, the stiffer particles show significantly faster kinetics [6]. Similar results could be shown in an experimental approach by Hui et al. in a study with silica nanocapsules. Softer particles showed a greater deformation, resulting in a slower and less efficient uptake for softer particles [7
PDF
Album
Full Research Paper
Published 16 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • environments, new opportunities arise for changing the properties of materials. Assembling ionic/molecular building blocks in a liquid that contains impurities generally does not change the intrinsic crystal structure of the obtained single crystals. However, the crystallization kinetics can be affected, which
  • clusters (PNCs), transition phases, and actual second building units (SBUs) in the prenucleation and growth steps (Figure 1). Transition and attachment of these species are not only controlled by thermodynamics but also strongly depend on kinetics. The decisive factors involve diffusion, local flow, and
  • vessels to be filled with liquid. When the coordination polymers nucleate and grow inside the connected vessels, the front of the crystals may swallow the networks under fast crystallization kinetics. Therefore, single crystals with encapsulated networks can be formed [41][42]. This strategy offers a
PDF
Album
Review
Published 12 Aug 2022
Other Beilstein-Institut Open Science Activities