Search results

Search for "structure" in Full Text gives 2176 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Hydrogels and nanogels: effectiveness in dermal applications

  • Jéssica da Cruz Ludwig,
  • Diana Fortkamp Grigoletto,
  • Daniele Fernanda Renzi,
  • Wolf-Rainer Abraham,
  • Daniel de Paula and
  • Najeh Maissar Khalil

Beilstein J. Nanotechnol. 2025, 16, 1216–1233, doi:10.3762/bjnano.16.90

Graphical Abstract
  • embedded in hydrophilic solvents, usually water, which can carry active materials and biomolecules [11][12][13]. After hydration in an aqueous environment, the hydrogel structure is created by hydrophilic groups or regions arranged in a polymeric network [14]. Hydrogels present interesting properties
  • stimuli such as heating/cooling [45][46]. Polymer chemical cross-linking can be performed by the formation of a network structure from monomers by polymerization or post-cross-linking of linear polymers with a cross-linking agent. Examples of chemical cross-linking methods are covalent bonding between
  • properties to a gel previously composed of a more rigid and brittle network, a double network gel with an IPN structure is obtained. This approach significantly contributes to improving the mechanical properties and stability of the system [43][52]. Synthetic polymers, including acrylates [53], acrylamide
PDF
Album
Review
Published 01 Aug 2025

Investigation of the solubility of protoporphyrin IX in aqueous and hydroalcoholic solvent systems

  • Michelly de Sá Matsuoka,
  • Giovanna Carla Cadini Ruiz,
  • Marcos Luciano Bruschi and
  • Jéssica Bassi da Silva

Beilstein J. Nanotechnol. 2025, 16, 1209–1215, doi:10.3762/bjnano.16.89

Graphical Abstract
  • concentration gradients, while the micellar structure remains intact throughout the dissolution process [25]. The kinetic constant (k) was elevated for all the systems, although polymer, temperature, and the solvent properties may influence this parameter. Overall, the water + P407 system demonstrated the most
PDF
Album
Letter
Published 29 Jul 2025

Chitosan nanocomposite containing rotenoids: an alternative bioinsecticidal approach for the management of Aedes aegypti

  • Maria A. A. Bertonceli,
  • Vitor D. C. Cristo,
  • Ivo J. Vieira,
  • Francisco J. A. Lemos,
  • Arnoldo R. Façanha,
  • Raimundo Braz-Filho,
  • Gustavo V. T. Batista,
  • Luis G. M. Basso,
  • Sérgio H. Seabra,
  • Thalya S. R. Nogueira,
  • Felipe F. Moreira,
  • Arícia L. E. M. Assis,
  • Antônia E. A. Oliveira and
  • Kátia V. S. Fernandes

Beilstein J. Nanotechnol. 2025, 16, 1197–1208, doi:10.3762/bjnano.16.88

Graphical Abstract
  • region was observed (Figure 6, white arrows), which progressively intensified at higher concentrations (100 and 200 ppm). This phenomenon may be indicative of physiological stress related to the integrity of the peritrophic matrix (PM), a semi-permeable structure that lines the midgut, playing essential
  • ). The same equipment was used to determine the zeta potential (ζ, in mV) of the nanoparticles under the following conditions: 25 °C operating temperature, an applied voltage of 200 V, and a total of 1,000 processed runs. Fourier-transform infrared spectroscopy The chemical structure of empty
PDF
Album
Full Research Paper
Published 28 Jul 2025

Electronic and optical properties of chloropicrin adsorbed ZnS nanotubes: first principle analysis

  • Prakash Yadav,
  • Boddepalli SanthiBhushan and
  • Anurag Srivastava

Beilstein J. Nanotechnol. 2025, 16, 1184–1196, doi:10.3762/bjnano.16.87

Graphical Abstract
  • functional theory (DFT) to explore the sensing capabilities of a ZnS (3,3) nanotube (ZnS NT) for detecting chloropicrin (CP, CCl3NO2), a highly toxic gas. To elucidate the sensing mechanism, we systematically analyze the adsorption configurations, Mulliken charge transfer, band structure, density of states
  • highly toxic chemical warfare agent, remains an area with untapped potential. Addressing this gap, the present work constructs an armchair ZnS NT to investigate its adsorption configurations, charge transfer, band structure, density of states, optical absorption, and optical conductivity using a density
  • ZnS NT with (3,3) chirality is illustrated in Figure 2. The structural analysis reveals an average Zn–S bond length of 2.29 Å, which is slightly shorter than the bond length of bulk ZnS (2.34 Å). This reduction in bond length can be attributed to the curvature of the NT structure, which induces a
PDF
Album
Full Research Paper
Published 25 Jul 2025

Mechanical stability of individual bacterial cells under different osmotic pressure conditions: a nanoindentation study of Pseudomonas aeruginosa

  • Lizeth García-Torres,
  • Idania De Alba Montero,
  • Eleazar Samuel Kolosovas-Machuca,
  • Facundo Ruiz,
  • Sumati Bhatia,
  • Jose Luis Cuellar Camacho and
  • Jaime Ruiz-García

Beilstein J. Nanotechnol. 2025, 16, 1171–1183, doi:10.3762/bjnano.16.86

Graphical Abstract
  • patients [6][7][8]. As a Gram-negative bacterium, PA is characterized by a distinctive cell wall structure constituted by a thin peptidoglycan layer enclosed by an outer membrane which contains lipopolysaccharides (LPS) [9][10][11]. The outer membrane also contains numerous proteins, lipoproteins, and
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2025

Transfer function of an asymmetric superconducting Gauss neuron

  • Fedor A. Razorenov,
  • Aleksander S. Ionin,
  • Nikita S. Shuravin,
  • Liubov N. Karelina,
  • Mikhail S. Sidel’nikov,
  • Sergey V. Egorov and
  • Vitaly V. Bol’ginov

Beilstein J. Nanotechnol. 2025, 16, 1160–1170, doi:10.3762/bjnano.16.85

Graphical Abstract
  • due to, for example, defects in the thin-film structure. The third type of asymmetry may be associated with unequal signal supply into the input arms of the neuron. Below, we analyze the transformation of the TF in each of these cases and compare it with experimental results [18]. Symmetric Gauss
  • lines show the baseline (see discussion in Sections Symmetric Gauss Neuron and Results (C)). The inset shows the calculated TF with t = 0.2 and ϕb = 0.3π. The dashed lines show the baseline (see discussion in Sections Symmetric Gauss Neuron and Results (C)). (b) Schematic of the structure of the studied
  • sample. LA,B denote receiving arms, Lout is the output arm, JJA,B are the JJs of the neuron, JJI,II are the JJs of the measuring element (i.e.,SQUID), and Lsq is the loop of the measuring element. Different colors represent elements in different layers of the multilayer structure. Hatching indicates the
PDF
Album
Full Research Paper
Published 21 Jul 2025

Crystalline and amorphous structure selectivity of ignoble high-entropy alloy nanoparticles during laser ablation in organic liquids is set by pulse duration

  • Robert Stuckert,
  • Felix Pohl,
  • Oleg Prymak,
  • Ulrich Schürmann,
  • Christoph Rehbock,
  • Lorenz Kienle and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 1141–1159, doi:10.3762/bjnano.16.84

Graphical Abstract
  • , Synthesis and Real Structure, Faculty of Engineering, Christian-Albrechts University of Kiel, Kaiserstraße 2, 24143 Kiel, Germany Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141 Essen, Germany Kiel Nano, Surface and
  • produces polycrystalline HEA NPs, nanosecond-pulsed laser ablation favors a metastable amorphous structure. Particle cores in all cases exhibit a homogeneous distribution of the metals Cr, Mn, Fe, Co, and Ni, while particle shells were found to vary between manganese-enriched oxide layers and thin
  • graphitic carbon coatings. The discovery of the structure-directing mechanism allows one to select between crystalline or amorphous HEA NP products, simply by choice of the laser pulse duration in the same, well-scalable setup, giving access to colloidal particles that can be further downstream processed to
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2025

Deep learning for enhancement of low-resolution and noisy scanning probe microscopy images

  • Samuel Gelman,
  • Irit Rosenhek-Goldian,
  • Nir Kampf,
  • Marek Patočka,
  • Maricarmen Rios,
  • Marcos Penedo,
  • Georg Fantner,
  • Amir Beker,
  • Sidney R. Cohen and
  • Ido Azuri

Beilstein J. Nanotechnol. 2025, 16, 1129–1140, doi:10.3762/bjnano.16.83

Graphical Abstract
  • -resolution imaging of simple and complex surfaces that capture the sensitive features, details, and information of the surface structure. Whereas many manifestations of AFM are in use, including remarkable sub-molecular resolution for specialized systems working under low temperatures and high vacuum [1
PDF
Album
Full Research Paper
Published 16 Jul 2025

Towards a quantitative theory for transmission X-ray microscopy

  • James G. McNally,
  • Christoph Pratsch,
  • Stephan Werner,
  • Stefan Rehbein,
  • Andrew Gibbs,
  • Jihao Wang,
  • Thomas Lunkenbein,
  • Peter Guttmann and
  • Gerd Schneider

Beilstein J. Nanotechnol. 2025, 16, 1113–1128, doi:10.3762/bjnano.16.82

Graphical Abstract
  • nm, from which quantitative data are often extracted. For example, in materials science applications, nanoscale spectromicroscopy [5][6][7][8] is used to examine a sample around its absorption edges, which provides insights into its electronic structure. In biomedical applications [9][10][11][12
  • used Equation 15 and Equation 16. We found that the images from the pc-Mie model (Figure 2) were qualitatively similar to the experimental data in many respects: (1) After normalization, the images from both the model and data spanned similar intensity ranges; (2) the complex structure of the xz and yz
  • value of 62.2 ± 2.9 nm. Furthermore, TEM images showed that the nanospheres were solid and had roughly similar densities throughout. By TEM, the interior of the nanospheres did exhibit some lightly shaded stripes, characteristic of a channeling effect expected to arise from a crystalline structure. To
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2025

Influence of ion beam current on the structural, optical, and mechanical properties of TiO2 coatings: ion beam-assisted vs conventional electron beam evaporation

  • Agata Obstarczyk and
  • Urszula Wawrzaszek

Beilstein J. Nanotechnol. 2025, 16, 1097–1112, doi:10.3762/bjnano.16.81

Graphical Abstract
  • adhesion to substrates and a densely packed structure. Also, the deposition rate is low, which affects the high residual stress of the coating [7]. In order to improve the properties of vapor-deposited coatings, it is necessary to increase the total energy of the particles reaching the substrates. In
  • structure, and the improvement of stability and homogeneity of the coatings. In addition, it is possible to modify the microstructure, resulting in dense, nearly stoichiometric films that are much more resistant to temperature and humidity changes than films deposited in the conventional EBE process [4][9
  • , and good availability, TiO2 in the form of thin films is now widely used in the development of gas sensors, photodetectors, solar cells, memristors, and photocatalysts [1][12][15][16][17]. The area of application of titanium dioxide is also related to the crystal structure in which it occurs, that is
PDF
Album
Full Research Paper
Published 14 Jul 2025

Fabrication of metal complex phthalocyanine and porphyrin nanoparticle aqueous colloids by pulsed laser fragmentation in liquid and their potential application to a photosensitizer for photodynamic therapy

  • Taisei Himeda,
  • Risako Kunitomi,
  • Ryosuke Nabeya,
  • Tamotsu Zako and
  • Tsuyoshi Asahi

Beilstein J. Nanotechnol. 2025, 16, 1088–1096, doi:10.3762/bjnano.16.80

Graphical Abstract
  • polypropylene oxide (PPO) arranged in a triblock structure. Here, the stability in phosphate-buffered saline (PBS, pH 7.2), which is used widely in pharmacology and biomedical experiments, was examined. We evaluated the phototoxicity of the fabricated nanoparticle colloids in vitro against PC12 cells (a cell
  • molecular absorption peak (680 nm) are characteristic of the spectral shape of MPc solids, in which planar molecules stack in slipped arrangements in one dimension. It is well known that the peak wavelengths and the relative absorption intensity of the peaks depends on the crystalline structure, that is
  • hydrophobic interactions between the hydrophobic nanoparticles’ surface and the hydrophobic PPO block of F-127. A nanoemulsion having a core (MPcs or PtOEP nanoparticle)–shell (F-127) structure formed immediately after laser fragmentation of microcrystals, leading to the generation of highly dispersive
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2025

Single-layer graphene oxide film grown on α-Al2O3(0001) for use as an adsorbent

  • Shiro Entani,
  • Mitsunori Honda,
  • Masaru Takizawa and
  • Makoto Kohda

Beilstein J. Nanotechnol. 2025, 16, 1082–1087, doi:10.3762/bjnano.16.79

Graphical Abstract
  • ions, including radioactive nuclides in aqueous solutions. Large-area and single-layer graphene oxide (SLGO) grown on α-Al2O3(0001) was used as a model structure of GO since the aggregation and re-stacking of the GO sheets prevent the adequate analysis of the adsorption state. The SLGO film was
  • deposition; electronic state analysis; graphene oxide; X-ray absorption fine structure; Introduction Graphene oxide (GO) is oxidized graphene and its surface and periphery are partially modified by epoxy, hydroxy, and carboxy functional groups [1][2]. GO can be thinned to a monolayer of one carbon atom and
  • . In this study, the SLGO surface after Cs adsorption was analyzed by surface analytical tools. This enabled us to elucidate the adsorbing sites and electronic state of Cs on SLGO. Additionally, we examined the electronic structure of Cs adsorbed on SLGO in several different solutions with pH values of
PDF
Album
Full Research Paper
Published 10 Jul 2025

Piezoelectricity of hexagonal boron nitrides improves bone tissue generation as tested on osteoblasts

  • Sevin Adiguzel,
  • Nilay Cicek,
  • Zehra Cobandede,
  • Feray B. Misirlioglu,
  • Hulya Yilmaz and
  • Mustafa Culha

Beilstein J. Nanotechnol. 2025, 16, 1068–1081, doi:10.3762/bjnano.16.78

Graphical Abstract
  • structural changes [2]. Bone has an intrinsic regenerative capacity, enabling new bone formation after injury through the piezoelectric properties of its natural collagen structure. The piezoelectricity of bone tissue facilitates regeneration by converting mechanical stimuli into electrical signals. This
  • capability arises from the noncentrosymmetric structure of collagen, which allows both direct and inverse piezoelectric effects [9]. Mechanically induced electrical stimulation activates cellular signaling pathways that enhance osteogenesis and promote osteogenic differentiation [10]. Specifically
  • , making them particularly attractive for biomedical applications. [21][22]. Barium titanate (BaTiO3) is one of the most well-known piezoelectric nanomaterials (NMs), characterized by a cubic structure with four polymorphs which change depending on the temperature and a high dielectric constant. All its
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
  • ., atomic and molecular) is becoming increasingly important in the development of functional materials [90][91][92][93][94]. Even for the same material, alterations to its internal or assembly structure can result in significant changes to its functionality. Furthermore, as evidenced by quantum materials
  • control the structure of discotic liquid crystal molecular nanowires by manipulating the subphase temperature and surface pressure in a Langmuir monolayer system (Figure 2) [226]. The LB technique represents a powerful methodology that allows for effective control over the assembly of molecular-sized
  • thicknesses. At low temperatures, the molecular nanowires coalesce, whereas, at high temperatures, the nanowires separate to form interconnected networks. The compression of the thin-film structure on the water surface resulted in the transformation of the network into a compact and highly uniform monolayer
PDF
Album
Review
Published 04 Jul 2025

Multifunctional properties of bio-poly(butylene succinate) reinforced with multiwalled carbon nanotubes

  • Volodymyr Krasinskyi,
  • Krzysztof Bajer,
  • Ludmila Dulebova,
  • Nickolas Polychronopoulos,
  • Oksana Krasinska and
  • Daniel Kaczor

Beilstein J. Nanotechnol. 2025, 16, 1014–1024, doi:10.3762/bjnano.16.76

Graphical Abstract
  • ); structure; tribological properties; Introduction In recent years, biodegradable polymers have gained significant attention as environmentally friendly alternatives to traditional plastics. One particularly promising material is poly(butylene succinate), which exhibits a desirable combination of mechanical
  • morphology and properties of the polymer matrix by altering its structure, crystallinity, thermal stability, and mechanical behavior [9][10][11]. CNTs can be classified into two basic types, namely, single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). SWCNTs exhibit slightly
  • many researchers [9][10][11][12][13][14][15][16]. Regarding PBS-based nanocomposites, most studies focus on the influence of CNTs (including modified CNTs) on their thermal behavior [17][18][19], crystallization [20][21][22], structure [14][17][21][22][23], and biodegradability [12]. PBS/CNT
PDF
Album
Full Research Paper
Published 03 Jul 2025

A calix[4]arene-based supramolecular nanoassembly targeting cancer cells and triggering the release of nitric oxide with green light

  • Cristina Parisi,
  • Loredana Ferreri,
  • Tassia J. Martins,
  • Francesca Laneri,
  • Samantha Sollima,
  • Antonina Azzolina,
  • Antonella Cusimano,
  • Nicola D’Antona,
  • Grazia M. L. Consoli and
  • Salvatore Sortino

Beilstein J. Nanotechnol. 2025, 16, 1003–1013, doi:10.3762/bjnano.16.75

Graphical Abstract
  • reaction between suitable photosensitizers and the NOPD co-encapsulated within different types of biocompatible host systems. Inspired by this work, we thought that a calixarene covalently integrating specific cell-targeting ligands and a suitable chromo-fluorogenic unit can impose the whole structure
  • . Compound 2 and its non-nitrosated precursor 2b were characterized by 1D NMR (Figures S8,S9, Supporting Information File 1). Self-assembling and spectroscopic properties of 1 Due to the polycationic structure, compound 1 showed good water solubility as evidenced by its absorption spectrum dominated by the
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2025

Time-resolved probing of laser-induced nanostructuring processes in liquids

  • Maximilian Spellauge,
  • David Redka,
  • Mianzhen Mo,
  • Changyong Song,
  • Heinz Paul Huber and
  • Anton Plech

Beilstein J. Nanotechnol. 2025, 16, 968–1002, doi:10.3762/bjnano.16.74

Graphical Abstract
  • of ablation, fragmentation or colloidal fusion may look macroscopically different in each application, the underlying fundamental mechanisms are always the same cascade of laser interaction with matter, non-thermal or thermal energy deposition, phase transitions, and the subsequent structure
  • electrons or X-rays are able to address this challenge. In particular, it is possible to investigate LSPC on single objects using single probe pulses and avoid accumulation effects in a heterogeneous sample. The presented results capture structure formation with femtosecond and atomic scale resolution
  • scattering; Review Introduction Laser synthesis and processing of materials with emphasis on structure formation on the nanoscale offers a multitude of pathways to desired structure-related functions [1]. In green processes, nanostructures and nanoparticles (NPs) can be produced that serve applications in
PDF
Album
Review
Published 02 Jul 2025

Shape, membrane morphology, and morphodynamic response of metabolically active human mitochondria revealed by scanning ion conductance microscopy

  • Eric Lieberwirth,
  • Anja Schaeper,
  • Regina Lange,
  • Ingo Barke,
  • Simone Baltrusch and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2025, 16, 951–967, doi:10.3762/bjnano.16.73

Graphical Abstract
  • diabetes mellitus [20][21]. While the inner mitochondrial membrane and its cristae structure have been extensively studied, comparatively little is known about the outer mitochondrial membrane. The outer membrane, in direct contact with the cytosol and the other organelles, plays a crucial role in cellular
PDF
Album
Supp Info
Full Research Paper
Published 30 Jun 2025

Tendency in tip polarity changes in non-contact atomic force microscopy imaging on a fluorite surface

  • Bob Kyeyune,
  • Philipp Rahe and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 944–950, doi:10.3762/bjnano.16.72

Graphical Abstract
  • insulator materials in real space with unprecedented spatial resolution [2][3][4][5][6]. Besides high-resolution imaging of molecular structures [7], NC-AFM has demonstrated its ability to identify sublattices of atomic surfaces [8][9][10]. In these studies, the knowledge of the tip’s atomic structure plays
  • structure elucidation and identification of surface sites. However, this approach is presently not feasible for measurements performed at room temperature as the required control over the tip termination is challenged by thermal motion. For room-temperature measurements, it is common practice to bring the
  • tip apex in slight contact with the surface under investigation to form a tip cluster yielding atomic contrast [18]. As structure and chemical composition of the resulting tip-terminating cluster are not known, the understanding of contrast formation with non-functionalized tips has been developed
PDF
Album
Full Research Paper
Published 26 Jun 2025

Synthesis of biowaste-derived carbon-dot-mediated silver nanoparticles and the evaluation of electrochemical properties for supercapacitor electrodes

  • Navya Kumari Tenkayala,
  • Chandan Kumar Maity,
  • Md Moniruzzaman and
  • Subramani Devaraju

Beilstein J. Nanotechnol. 2025, 16, 933–943, doi:10.3762/bjnano.16.71

Graphical Abstract
  • phase composition could be classified according to the face-centered cubic structure of silver. The XRD spectrum showed that the formed PG-CDs-AgNPs were nanocrystals, as confirmed by the peaks at 2θ ≈ 28.20°, 32.66°, 38.61°, 46.60°, and 57.86°. These Bragg diffraction peaks are equivalent to the (110
  • ), (111), (121), (200), and (311) planes, which can be seen in the face-centered cubic structure of silver [28][29]. The XRD analysis of the PG-CDs-AgNPs produced via PG-CDs mediated reduction resembles the crystalline phase as referenced by (JCPDS File No. 84-0713) data [30]. Furthermore, the XPS
  • storage. The size distribution, morphology, and crystallinity of PG-CDs-AgNPs were further characterized by SEM and TEM analysis. The SEM image of PG-CDs-AgNPs (Supporting Information File 1, Figure S2a) reveals that PG-CDs-AgNPs possess spherical and distorted spherical structure. Supporting Information
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2025

Structural and magnetic properties of microwave-synthesized reduced graphene oxide/VO2/Fe2O3 nanocomposite

  • Sumanta Sahoo,
  • Ankur Sood and
  • Sung Soo Han

Beilstein J. Nanotechnol. 2025, 16, 921–932, doi:10.3762/bjnano.16.70

Graphical Abstract
  • 710 F/g. The MW-assisted approaches have been further explored for the synthesis of binary NCs based on rGO and iron oxides. In one of our earlier reports, such an MW irradiation-based approach was adopted to synthesize Fe2O3/rGO NC, using hemin as the precursor. Owing to its 3D network structure, the
  • , the approach was also able to convert V2O5 to form VO2 and synthesize Fe2O3 from ferrocene. The structure and properties of the NC were examined through various characterization techniques. Lastly, the magnetic properties of Fe-containing ternary NCs were also evaluated for their possible biomedical
  • indicate the alteration of the components in the NCs. The formation of defects is a prime characteristic of the MW synthesis of graphene materials. The implementation of MW irradiation generates an enormous amount of heat, which further creates structural defects and disorders in the graphene structure
PDF
Album
Full Research Paper
Published 20 Jun 2025

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • Cs+ FIB in comparison to results of layer deposition induced by Rb+ and Ga+. Pt was deposited at different acceleration voltages and ion beam currents to evaluate the deposition rate and the electrical resistivity of the layers. To measure the grain structure as well as the material composition using
  • characterization in terms of elemental composition and structure was done with a JEOL ARM 200F (S)TEM system equipped with an Oxford EDS detector. Results and Discussion Deposit surface First, to reveal possible surface modifications, Pt layers were deposited with Cs+ ions at 16, 8, 5, and 2 kV with a current
  • used for deposition with different beam energies. Bright-field images of Cs+-induced Pt deposit and Pt grain size data for different acceleration voltages. (a) Structure for the resistivity measurements consisting of four Cr electrodes and the 35 μm by 1.5 μm Ga-induced Pt deposit layer. The red line
PDF
Album
Full Research Paper
Published 16 Jun 2025

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • coating on the electronic structure and chemical state of graphite layers formed on the surface of a polycrystalline diamond (PCD) film with mixed grain orientation was studied. A synthetic single-crystal diamond (SCD) with a polished (110) face was examined for comparison. The samples were coated with a
  • fine structure (NEXAFS) methods. XPS data revealed the formation of a thin graphite-like film with low-ordered atomic structure on the surface of the nickel-coated PCD film. The chemical state of sp2-hybridized carbon atoms was found to be insensitive to the face orientation of the diamond micro-sized
  • crystallites; however, the layer defectiveness increased in areas with fine-dispersed crystallites. According to NEXAFS and Raman spectroscopy data, the most ordered atomic structure of graphitic layers was obtained by annealing nickel-coated SCD. The angular dependence of NEXAFS C K-edge spectra of nickel
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • , which is a well-established and non-destructive method to determine crystal structure, lattice defects, and dynamics. Since ZnO is a polar semiconductor, the phonon–electron interaction produces longitudinal optical (LO) phonon modes, whose long-range behavior considerably affects the efficacy of
  • crystalline structure is studied using a Bruker AXS D8 Advance X-ray diffractometer operating in grazing incidence geometry using Cu Kα radiation (λ = 1.5406 Å). The scans are obtained at an incidence angle of 0.5°. The Raman spectra of ZnO films before and after implantation are recorded at room temperature
  • films at various ion fluences are depicted in Figure 2. The coexistence of two diffraction peaks (Figure 2) depicts the polycrystalline nature of films. The diffraction peaks centered at 2θ values of 34.23° and 62.59° corresponding to (002) and (103) planes, respectively, confirm the wurtzite structure
PDF
Album
Full Research Paper
Published 11 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • transport properties in the presence of specific gases, due to the redox reactions that take place on the surface [12][13]. An atomic level understanding of the structure–function relationship in this oxide is essential for guiding the design of efficient materials to optimize the performance of the
  • , complementary information on the electronic properties and on the local atomic structure can be obtained from the analysis of XAS data. X-ray absorption near-edge spectroscopy (XANES), analyzing the signal within the first few tens of electronvolts above the absorption edge, provides information mainly on the
  • density of empty states of the investigated sample. In contrast, the extended energy range X-ray absorption fine structure (EXAFS), up to a few hundred electronvolts above the absorption edge, is sensitive to the local atomic structure around the absorbers. A polarization-dependent Ce L3-edge EXAFS study
PDF
Album
Review
Published 10 Jun 2025
Other Beilstein-Institut Open Science Activities