Search results

Search for "surface structures" in Full Text gives 87 result(s) in Beilstein Journal of Nanotechnology.

Structural development and energy dissipation in simulated silicon apices

  • Samuel Paul Jarvis,
  • Lev Kantorovich and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2013, 4, 941–948, doi:10.3762/bjnano.4.106

Graphical Abstract
  • affect calculated tip-force F(z) curves and the hysteresis pathways followed by the tip and surface structures [28]. For instance, the bulk-like rear structure of tip apices is almost always aligned parallel to the surface for convenience when designing the tip. There is no reason to expect, however
PDF
Album
Full Research Paper
Published 20 Dec 2013

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • before and after cycling could be detected for this sample (see Figure 9 below). A coarsening of the finer surface structures is also visible in the SEM images (Figure 2d). A few isolated grains exhibit a high stiffness. This harder surface area is also not conductive. In general, most of the conductive
PDF
Album
Full Research Paper
Published 04 Oct 2013

Influence of the solvent on the stability of bis(terpyridine) structures on graphite

  • Daniela Künzel and
  • Axel Groß

Beilstein J. Nanotechnol. 2013, 4, 269–277, doi:10.3762/bjnano.4.29

Graphical Abstract
  • ) (BTPs) have been studied intensively in recent years [2][3][4][5][6][7][8][9][10]. They are known to adsorb in a flat configuration on various surfaces and to form self-organized ordered surface structures. In previous publications, we were able to show that combined DFT and force-field simulations can
  • the liquid/HOPG interface three closely related linear patterns and one hexagonal two-dimensional pattern were identified, at the gas/HOPG interface only one of the linear patterns and the hexagonal structure were found. The concentration dependence of the different surface structures was rationalized
  • , force-field molecular dynamics are used in order to describe the adsorption properties of solvated BTP molecules on graphite. The structure of 3,3′-BTP, which is known for its high versatility in surface structures is shown in Figure 1. There are of course force fields that reproduce structural
PDF
Album
Full Research Paper
Published 22 Apr 2013

Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism

  • Gregor Hlawacek,
  • Vasilisa Veligura,
  • Stefan Lorbek,
  • Tijs F. Mocking,
  • Antony George,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2012, 3, 507–512, doi:10.3762/bjnano.3.58

Graphical Abstract
  • backscattered He yields with respect to SiO2/Si (BSHe yield: 1) are 1.58 and 1.45 for PFS and MS, respectively. We will discuss the underlying contrast mechanisms below; however, we first highlight two more examples of ultrathin surface structures that are made visible in BSHe images. In Figure 2 HIM images of
  • , in Figure 3c, which was recorded under identical conditions but with a sample tilt of 10°, the islands are hardly discernible. Discussion As we have seen above, BSHe images can be used to obtain information on ultrathin surface structures on crystalline substrates. In this context, the last part of
PDF
Album
Full Research Paper
Published 12 Jul 2012

An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001)

  • Antoine Hinaut,
  • Adeline Pujol,
  • Florian Chaumeton,
  • David Martrou,
  • André Gourdon and
  • Sébastien Gauthier

Beilstein J. Nanotechnol. 2012, 3, 221–229, doi:10.3762/bjnano.3.25

Graphical Abstract
  • the surface structures is then largely smaller than the applied bias. This effect, which explains the high values we observe, renders a quantitative analysis of the Kelvin voltage more difficult on bulk insulators than on conducting substrates. Conclusion We have demonstrated that HCPTP forms two
PDF
Album
Full Research Paper
Published 12 Mar 2012

Self-assembly of octadecyltrichlorosilane: Surface structures formed using different protocols of particle lithography

  • ChaMarra K. Saner,
  • Kathie L. Lusker,
  • Zorabel M. LeJeune,
  • Wilson K. Serem and
  • Jayne C. Garno

Beilstein J. Nanotechnol. 2012, 3, 114–122, doi:10.3762/bjnano.3.12

Graphical Abstract
  • nanodot surface structures. The consistent and reproducible geometries of the different OTS nanostructures are not necessarily a “failed” approach for particle lithography, rather a range of different surface shapes and thicknesses can be generated for selected applications. Overall, the highest-quality
  • molecules to surfaces, the molecular arrangement and surface density can be controlled. For example, submonolayer surface coverage was obtained by using protocols with contact printing. Changing the material composition of the mesoparticle masks produced entirely different surface structures for annealed
  • masks of latex and silica spheres. The meniscus sites of water residues at the base of latex spheres furnish local containers for self-polymerization reactions to generate multilayer surface structures. Optimized structures with nearly the thickness of an ideal monolayer were achieved by using annealed
PDF
Album
Full Research Paper
Published 09 Feb 2012

Impact of cell shape in hierarchically structured plant surfaces on the attachment of male Colorado potato beetles (Leptinotarsa decemlineata)

  • Bettina Prüm,
  • Robin Seidel,
  • Holger Florian Bohn and
  • Thomas Speck

Beilstein J. Nanotechnol. 2012, 3, 57–64, doi:10.3762/bjnano.3.7

Graphical Abstract
  • convex and papillate epidermal cells are between 20 and 50 µm and hence spacing between the cells should allow the claws to interlock, while for the tested plant surfaces with tabular epidermal cells no such surface structures are given. We propose that the cell shape dependent differences in traction
PDF
Album
Video
Full Research Paper
Published 23 Jan 2012

The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2011, 2, 302–310, doi:10.3762/bjnano.2.35

Graphical Abstract
  • tribological properties of natural surfaces in general, and the present paper opens a new field in the biomechanics and biomimetics of this kind of system. Here, we were able to establish the first artificial prototypes of anisotropic surface structures by a two-step replicating process. In the framework of a
  • were examined using a conventional SEM method as described in [22]. Morphometrical variables of the surface structures, such as lunate cell width W, length L, and height C of the span in the pendent cell margin, height H of the prominent cell margin relative to the adjoining cell, slopes of two free
PDF
Album
Full Research Paper
Published 16 Jun 2011

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • µl) water droplets, which cannot provide self-cleaning properties. One simple and precise method to transfer petal surface structures into an artificial material is a soft lithography technique called replica moulding [26]. Specifically, for the replication of biological surfaces Koch et al. [27][28
  • ] introduced a cost-efficient, two-step replication technique. This precise method prevents shrinking and damaging of the biological master during the replication process by avoiding a vacuum preparation step or critical temperatures as are used in most other techniques, and biological surface structures with
  • with a cr (= coated replicas) and the original petals are unmarked]. Petal surfaces of all four species are characterized by micropapillae with a cuticular folding on top (Figure 2; 1a–4a). As the pictures show, the replicas possess the same surface structures as the original petals. Minor deviations
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Sorting of droplets by migration on structured surfaces

  • Wilfried Konrad and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2011, 2, 215–221, doi:10.3762/bjnano.2.25

Graphical Abstract
  • ; microfluidics; surface; surface energy; surface structures; Introduction Manipulation of droplets is an issue of great interest in microfluidics. The underlying motivation is the design of microdevices that are able to perform various fluidic processes within dimensions on the micrometer scale [1]. “Lab-on-a
PDF
Album
Full Research Paper
Published 20 Apr 2011

Superhydrophobicity in perfection: the outstanding properties of the lotus leaf

  • Hans J. Ensikat,
  • Petra Ditsche-Kuru,
  • Christoph Neinhuis and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 152–161, doi:10.3762/bjnano.2.19

Graphical Abstract
  • h. Bhushan et al. (2010) [4] used the surface structures of the lotus leaf as model for the development of artificial biomimetic superhydrophobic structures. It became obvious that the outstanding and stable superhydrophobicity of the lotus leaf relies on the combination of optimized features such
  • local contact angle of the surface structures. For the surface of a papilla coated with wax tubules, a superhydrophobic behavior with a local contact angle of >140° can be assumed. So, the diameter of the contact areas can be estimated from the SEM images and the cross sections of the selected samples
  • retention of the Cassie state with only partial contact between surface and water – an intrusion of water between the surface structures must be avoided. When the air layer is displaced by water, the water repellency is lost and the surface becomes wet (Wenzel state). The pressure which is necessary to
PDF
Album
Video
Full Research Paper
Published 10 Mar 2011

Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention

  • Petra Ditsche-Kuru,
  • Erik S. Schneider,
  • Jan-Erik Melskotte,
  • Martin Brede,
  • Alfred Leder and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 137–144, doi:10.3762/bjnano.2.17

Graphical Abstract
  • of the elytra under hydrodynamic conditions and its effect on friction drag. By carrying out scanning electron microscopy, particle image velocimetry and air film persistence tests, we will answer the following questions: (1) Do the air retaining surface structures vary on the different body parts
  • covered with hairy structures over almost all its body with exception of head, pronotum and legs. The body parts show a large variety of surface structures, but in general two types of surface protuberances occur: Large and sparse setae as well as small and dense microtrichia. Setae have a socket
  • originating from an adjacent cell and are classified as true hairs, while microtrichia originating from one cell and are, by definition, not really hairs [27][28]. Three different body parts of Notonecta glauca with different surface structures were selected for further investigations; a pure setae structure
PDF
Album
Full Research Paper
Published 10 Mar 2011
Other Beilstein-Institut Open Science Activities