Search results

Search for "impedance spectroscopy" in Full Text gives 107 result(s) in Beilstein Journal of Nanotechnology.

Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries

  • Mario Marinaro,
  • Santhana K. Eswara Moorthy,
  • Jörg Bernhard,
  • Ludwig Jörissen,
  • Margret Wohlfahrt-Mehrens and
  • Ute Kaiser

Beilstein J. Nanotechnol. 2013, 4, 665–670, doi:10.3762/bjnano.4.74

Graphical Abstract
  • (trifluoromethane)sulfonimide lithium salt (LiTFSI)/tetraglyme electrolyte were investigated by galvanostatic cycling and electrochemical impedance spectroscopy measurements. Ex-situ X-ray diffraction and scanning electron microscopy were used to evaluate the formation/dissolution of Li2O2 particles at the cathode
  • side during the operation of Li–O2 cells. Keywords: aprotic electrolyte; impedance spectroscopy; Li–O2 batteries; scanning electron microscopy; Introduction The development of new types of electrochemical power sources is nowadays considered a key factor for further development of hybrid and fully
  • electrolyte. The electrochemical behaviors of the batteries were investigated by galvanostatic cycling and electrochemical impedance spectroscopy. The physico–chemical investigation of the lithium-oxide phases that form and dissolve at the cathode side upon discharge and charge of Li–O2 batteries has been
PDF
Album
Full Research Paper
Published 18 Oct 2013

Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications

  • Mikhail S. Kondratenko,
  • Igor I. Ponomarev,
  • Marat O. Gallyamov,
  • Dmitry Y. Razorenov,
  • Yulia A. Volkova,
  • Elena P. Kharitonova and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 481–492, doi:10.3762/bjnano.4.57

Graphical Abstract
  • were examined by means of SAXS, thermomechanical analysis (TMA), and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC) durability test. The modification of the PBI-O-PhT films
  • reduced conductivity due to an excessively high degree of crosslinking. Keywords: composite; high temperature polymer-electrolyte fuel cells (HT-PEFC); impedance spectroscopy; polybenzimidazole (PBI); zirconium; Introduction Polymer-electrolyte fuel cells (PEFC) based on polybenzimidazole (PBI
  • the membranes is also confirmed by the double-layer capacitance data presented in Figure 12. The capacitance values, which can be measured by means of impedance spectroscopy, depend on the boundary area between the proton- (PA) and electron- (Pt and carbon support) conducting phases and serve as a
PDF
Album
Full Research Paper
Published 21 Aug 2013

Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR

  • Thomas Simons and
  • Ulrich Simon

Beilstein J. Nanotechnol. 2012, 3, 667–673, doi:10.3762/bjnano.3.76

Graphical Abstract
  • sensor at the same time. By means of temperature-dependent impedance spectroscopy we found that the thermally induced NH3 desorption in H-form and in Fe-loaded zeolite H-ZSM-5 follow the same process, while a remarkable difference under DeNOx-SCR reaction conditions was found. The Fe-loaded catalyst
  • elementary catalytic process promoting a full description of the NH3-SCR reaction system. Keywords: DeNOx-SCR; gas sensing; in situ; impedance spectroscopy; zeolite; Introduction Zeolites are crystalline, nanoporous aluminosilicates composed of [TO4] tetrahedra (T = Si, Al). In H-form zeolites protons
  • also applied in gas sensors [12][13][14][15][16][17]. They are proton conductors due to the mobility of the charge-compensating protons. By means of impedance spectroscopy (IS) [18][19][20][21] and quantum chemical calculations on H-ZSM-5 [22][23], we showed in previous works that protons can move
PDF
Album
Letter
Published 26 Sep 2012

A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

  • Wenyu Zhang,
  • Yi Zeng,
  • Chen Xu,
  • Ni Xiao,
  • Yiben Gao,
  • Lain-Jong Li,
  • Xiaodong Chen,
  • Huey Hoon Hng and
  • Qingyu Yan

Beilstein J. Nanotechnol. 2012, 3, 513–523, doi:10.3762/bjnano.3.59

Graphical Abstract
  • hybrid sample helps to reduce the dissolution of Mn into the electrolyte further. The superior electrochemical performance of LMO/G electrodes is ascribed to three aspects. First, the LMO/G exhibits fast kinetics of Li-ion and electron diffusion, as examined by the electrochemical impedance spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2012

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSCs). Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron
  • also observed after TiCl4 treatment. The synergistic effect of the variation of the TiO2 conduction band and the electron recombination determined the open-circuit voltage of the DSC. Keywords: dye-sensitized solar cells; electrochemical impedance spectroscopy; electron recombination; TiO2 [001] facet
  • transport and back reaction of the DSCs with the spheres were investigated by electrochemical impedance spectroscopy. In addition, the effect of treatment by an aqueous solution of TiCl4 on the performance of the DSCs with the TiO2 spheres was discussed. Experimental Synthesis of TiO2 nanosheet particles
PDF
Album
Full Research Paper
Published 07 May 2012

Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

  • Masao Kaneko,
  • Hirohito Ueno and
  • Junichi Nemoto

Beilstein J. Nanotechnol. 2011, 2, 127–134, doi:10.3762/bjnano.2.15

Graphical Abstract
  • are low for such mesoporous TiO2 thin film as investigated by an alternating current impedance spectroscopy. The electron conductivity of TiO2 itself is not high. However, the carrier density N of 6.96 × 1019 cm−3 obtained from Figure 4 was high, in the order as that of graphite, indicating that the
PDF
Album
Full Research Paper
Published 28 Feb 2011

Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

  • Jaydeep Bhattacharya,
  • Alexandre Kisner,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2011, 2, 104–109, doi:10.3762/bjnano.2.12

Graphical Abstract
  • monitored by impedance spectroscopy across the nanoporous alumina membrane in real-time. Our approach offers a simple and efficient methodology to investigate the activity of transmembrane proteins or ion diffusion across membrane bilayers. Keywords: anodization; lipid bilayer; microfluidics
  • formation of lipid bilayers on top of the nanoporous membrane which is monitored using impedance spectroscopy. Experimental The experimental setup for the microfluidic anodization approach is shown schematically in Figure 1. The aluminum substrate, either a 30 µm thick aluminum foil or a thin aluminum film
  • the nanoporous membrane. The dissolution of the barrier layer was monitored via impedance spectroscopy (10 Hz to 10 kHz) across the nanoporous alumina membrane by a modular electrochemical system [Autolab (PGSTAT 100/FRA2), Eco Chemie Utrecht, The Netherlands] using silver/silver chloride electrodes
PDF
Album
Full Research Paper
Published 11 Feb 2011
Other Beilstein-Institut Open Science Activities