Search results

Search for "polymers" in Full Text gives 565 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • colonic microflora. It has been reported that nanoparticles prepared with polymers such as chitosan, whose surface charge is positive, remain longer in the mucus due to electrostatic interaction with the negative charge of the aqueous mucin layer [15][29][30][31]. Docetaxel (DCX) is obtained semi
PDF
Album
Full Research Paper
Published 23 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • , dimethoate, and phorate were broken. The hydrolysis products contain sulfhydryl groups that bind to the silver atoms on the surface of the silver nanoclusters. The formation of non-fluorescent polymers resulted in a significant quenching of the fluorescence of the silver nanoclusters. Cu2+ effectively
  • conductive coatings and regenerated broken tips. The Pt/Ir cantilever was modified with small bundles of SWCNTs by a manual attachment process and fixed using a conductive Pt pad. AFM images of the current and topography of the nanomaterial samples and non-homogeneous polymers were collected using this type
PDF
Album
Review
Published 03 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • ALD, in MLD the deposition chemistry can be extended by including organic precursors, leading to the deposition of hybrid organic–inorganic MLD films [3][9]. Two organic precursors can also be employed to deposit pure organic MLD films, such as polymers [10][11][12]. Similar to ALD, MLD enables the
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • sandblasted steel-plates as mold inserts. It is an interesting feature of this procedure that a surface with nanostructures is realized without elaborate and costly lithography. Nanofur can be hot-pulled from several types of polymers [16]. Nonetheless, the surface area per process step is limited to some
  • mechanical stability of nanofur during hot pulling is sufficient, and the sacrificial layer is not needed. Future research might show how other polymers, especially biodegradable ones, can be hot-pulled in a R2R process. Furthermore, it might be possible to produce thin nanofur without sacrificial layer
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • layers, composed of biomolecules, polymers, supramolecular assemblies, and functional organic hybrids have been successfully constructed on the surface of QCM electrodes. According to frequency shifts of QCM upon adsorption, detection efficiencies of various selectors for chiral analytes could be
  • blocking layer between R-Nap and BSA. This suggested that this stronger interaction with R-Nap rather than with S-Nap should arise from different steric hindrance effects between BSA and R/S-Nap. The result was consistent with the QCM measurements. Polymer-based films for chirality sensing Polymers have
  • . synthesized serine derivatives based on homochiral coordination polymers (HCPs) of (ʟ)/(ᴅ)-SA-Cd and used them as enantioselective sensors toward guest enantiomers [37]. According to QCM measurements, the enantioselective factor values for lactic acid, menthol, valinol, and ʟ-phenylethylamine (PEA) were 1.72
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • available in MEGs, such as polymers, proteins, and natural fibers, poly(4-vinylphenol) (PVP) [75], polyvinyl alcohol (PVA) [76][77], fluorinated ethylene propylene (FEP) [21], and polyvinylidene difluoride (PVDF). These materials show good performance in the application of hydropower conversion. In addition
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • if the needles break and are deposited in the tissue [117][118]. Other non-degradable materials utilized to fabricate microneedles, include metals such as stainless steel [119] and titanium [120], ceramics, such as aluminum oxide [121], or synthetic polymers comprising polyvinylpyrrolidone (PVP) [122
  • ], polyvinyl alcohol (PVA) [123], and polymethacrylates [118][124][125]. Among the biodegradable materials, carbohydrates, including maltose [126], trehalose [127], and sucrose [128], are frequently mentioned. Moreover, biodegradable polymers such as poly(lactic acid) (PLA) [129], poly(glycolic acid) (PGA
  • ) [130], and poly(lactic-co-glycolic)acid (PLGA) [131] are widely investigated as microneedle materials. Among them, there are hydrogel-forming agents swelling upon the contact with interstitial fluid in the skin during microneedle application. These polymers include poly(ethylene glycol) diacrylate
PDF
Album
Review
Published 24 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • synthesis of carbon dots Green synthesis of CDs mainly utilizes biomass. Biomass synthesis makes use of natural raw materials (organisms, waste material, protein products, or natural polymers), instead of reaction precursors usually used in the traditional methods, and also requires external energy supply
  • materials, are summarized in Table 4. Natural polymer-based CDs Numerous natural polymers, including proteins and polysaccharides, have been used to obtain CDs (Table 5). Chen and co-workers used starch as a source to synthesize graphene quantum dots (CDs) via a one-pot hydrothermal method. They also
  • for the bright blue fluorescence of CDs synthesized using citric acid and EDA. It has been established that the CDs are a mixture of IPCA, polymers, and carbon cores [132]. Essner and co-workers carried out the synthesis of CDs using citric acid (paired with urea or ethylenediamine as a nitrogen
PDF
Album
Review
Published 05 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • materials should be in the form of inorganic and organic composites. To mimic the inorganic portion, researchers have tried to utilize calcium phosphate materials due to their similarity to the native tissue. To mimic the organic portion of the bone, several materials including polymers, proteins, and
  • and physically comparable microenvironment to that of the natural extracellular matrix, containing healing and stimulating components necessary for bone repair, making them a potential option for bone tissue regeneration. As carbon nanotubes are combined with natural polymers, such as chitosan and
  • collagen, they develop an interlinked molecular framework with load-bearing applications and have superior mechanical qualities and biological advantages [57]. A further study reported that carbon nanotubes combined with synthetic polymers of poly-ʟ-lactide acid, polylactic acid
PDF
Review
Published 29 Sep 2022

Analytical and numerical design of a hybrid Fabry–Perot plano-concave microcavity for hexagonal boron nitride

  • Felipe Ortiz-Huerta and
  • Karina Garay-Palmett

Beilstein J. Nanotechnol. 2022, 13, 1030–1037, doi:10.3762/bjnano.13.90

Graphical Abstract
  • a SPE (i.e., in-plane dipole) hosted by a 2D hBN layer inside the hybrid plano-concave microcavity. Keywords: Fabry–Perot; hBN; microcavities; plano-concave; polymers; Introduction Pure and indistinguishable SPEs are key components needed for their application in upcoming quantum technologies [1
  • microcavities [8], microdisk resonators [9], and photonic crystals [10][11] have been designed and built around color centers in hBN to increase its spontaneous emission by means of Purcell effect. An alternative and low-cost approach to build photonic structures uses polymers to embed different types of SPEs
PDF
Album
Full Research Paper
Published 27 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • [97], and peptide isomers known as peptoids, (oligo N-substituted glycines) [98]. In addition, the transfer of the general molecular structure of AMPs/HDPs has led to peptide-mimicking polymers and surface-engineered polymeric-brush-tethered AMPs. These approaches are promising for establishing
PDF
Album
Review
Published 08 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • ., Cu or Ni) to the desired target substrate (e.g., SiO2/Si, glass, or flexible polymers) often introduces inconsistencies among devices [10]. Various approaches have been developed to address this issue and establish a reproducible transfer process [11][12][13][14][15][16][17]. Among the many, the poly
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • Lingling Xia Qinyue Wang Ming Hu Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China 10.3762/bjnano.13.67 Abstract Various kinds of monocrystalline coordination polymers are
  • available thanks to the rapid development of related synthetic strategies. The intrinsic properties of coordination polymers have been carefully investigated on the basis of the available monocrystalline samples. Regarding the great potential of coordination polymers in various fields, it becomes important
  • to tailor the properties of coordination polymers to meet practical requirements, which sometimes cannot be achieved through molecular/crystal engineering. Nanoarchitectonics offer unique opportunities to manipulate the properties of materials through integration of the monocrystalline building
PDF
Album
Review
Published 12 Aug 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • manufacturing processes for MNs is of considerable interest. This study reports a simple fabrication process for thermoplastic MNs from cycloolefin polymers (COP) using hot embossing on polydimethylsiloxane (PDMS) soft molds. COP has gained interest due to its high molding performance and low cost. The resin
  • setting. Keywords: hot embossing; microneedles; penetration efficiency; thermoplastic polymers; two-photon polymerization; Introduction During the past two decades, MN devices have become a promising tool for transdermal drug delivery, vaccination, and point-of-care diagnostics [1][2]. MNs are a
  • classified into solid, hollow, coated, hydrogel-forming, and dissolvable types, which depending on the specific medical applications [12][13], are fabricated using silicon, metal, ceramic, silica glass, carbohydrate, and polymers [7][14]. In recent years, polymeric MNs have gained a lot of interest due to
PDF
Album
Full Research Paper
Published 08 Jul 2022

Influence of thickness and morphology of MoS2 on the performance of counter electrodes in dye-sensitized solar cells

  • Lam Thuy Thi Mai,
  • Hai Viet Le,
  • Ngan Kim Thi Nguyen,
  • Van La Tran Pham,
  • Thu Anh Thi Nguyen,
  • Nguyen Thanh Le Huynh and
  • Hoang Thai Nguyen

Beilstein J. Nanotechnol. 2022, 13, 528–537, doi:10.3762/bjnano.13.44

Graphical Abstract
  • DSSCs, which has led researchers to explore efficient cathode materials for DSSCs beyond platinum. To date, Pt replacement materials are divided into three categories, namely carbonaceous materials [2][3][4][5], conductive polymers [5], and transition metal compounds [6][7][8]. Transition metal
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2022

Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections

  • Sharif Abdelghany,
  • Walhan Alshaer,
  • Yazan Al Thaher,
  • Maram Al Fawares,
  • Amal G. Al-Bakri,
  • Saja Zuriekat and
  • Randa SH. Mansour

Beilstein J. Nanotechnol. 2022, 13, 517–527, doi:10.3762/bjnano.13.43

Graphical Abstract
  • dissolving polymeric microneedles prepared by a two-layer centrifugation method as a potential treatment of skin infections such as cellulitis. The polymers used were polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). Two formulations were investigated, namely CIP_MN1, composed of 10 mg ciprofloxacin
  • techniques. These microneedles are manufactured of polymers incorporated with medicaments and are intended to dissolve completely in the skin, permitting the medicament to be distributed in deeper skin layers to treat local and systemic infections [5]. Previous studies have shown the advantages of dissolving
  • microneedles are based on polymers such as PVA, PVP, chitosan, and poly(lactide-co-glycolide) [19]. In our study, polymer-based microneedles were optimized to achieve a formulation that can efficiently penetrate the skin. In this context, microneedles were studied regarding drug content and penetration of
PDF
Album
Full Research Paper
Published 15 Jun 2022

Investigation of electron-induced cross-linking of self-assembled monolayers by scanning tunneling microscopy

  • Patrick Stohmann,
  • Sascha Koch,
  • Yang Yang,
  • Christopher David Kaiser,
  • Julian Ehrens,
  • Jürgen Schnack,
  • Niklas Biere,
  • Dario Anselmetti,
  • Armin Gölzhäuser and
  • Xianghui Zhang

Beilstein J. Nanotechnol. 2022, 13, 462–471, doi:10.3762/bjnano.13.39

Graphical Abstract
  • density of the dark spots is estimated to be (2.0 ± 1.0) × 1012 cm−2 and the corresponding area fraction is approximately 3.2%. Analogous to the formation of 2D polymers on a surface or interface [6], the cross-linking could proceed either by step-growth or chain-growth kinetics. In the step-growth
  • . Brighter islands of 5–10 nm in size were still visible, separated by darker structures with a branched form, which can be considered remainders of the ordered layer. Many voids can be observed here. Unlike the dynamic free volume pores of polymers, these voids remain stable after multiple STM scans. By
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • most important role in determining the nature of the resulting glassy carbon” [9]. Sharma has also coined the term “polymer-derived carbons” for glassy carbon made by the thermal decomposition of polymers, which accounts for virtually all the glassy carbons found in the literature to date. In this
  • article, we have followed the nanoarchitectonics [10] concept to fabricate our glassy carbon material by using methane as building unit and carbon source rather than polymers. There are earlier works on methane pyrolysis in a flow reactor by F. G. Billaud et al. [11] and Z. Bai and co-workers [12]. Bai et
  • procedure utilising catalytic methane pyrolysis to fabricate glassy carbon microneedle electrodes for biomedical applications. Results and Discussion Growth of glassy carbon microneedles Previously, glassy carbon microneedles have been made by the pyrolysis of commercially available polymers. The polymer
PDF
Album
Full Research Paper
Published 19 May 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • materials are currently being discussed as potential alternatives. These include coordination polymers (CPs), covalent organic frameworks (COFs), polyoxometalates (POMs), hydrogen-bonded organic frameworks (HOFs), and mesoporous organosilica materials (MPOs) [3][9][10][11]. In particular, proton-conducting
  • coordination polymers (CPs), such as (porous) metal-organic frameworks (MOFs) and (non-porous, yet cross-linked) coordination networks [12], may offer alternatives to Nafion because of their structural controllability and high crystallinity [13]. The quest to develop new proton-conducting network materials is
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • electrodes by dip- or drop-coating techniques, using a porous substrate or binder polymers [69][76][77]. However, despite the widespread use and simplicity of this method of electrode preparation, it has a number of significant disadvantages. First, there is the problem of homogenization of the
PDF
Album
Full Research Paper
Published 03 May 2022

A chemiresistive sensor array based on polyaniline nanocomposites and machine learning classification

  • Jiri Kroutil,
  • Alexandr Laposa,
  • Ali Ahmad,
  • Jan Voves,
  • Vojtech Povolny,
  • Ladislav Klimsa,
  • Marina Davydova and
  • Miroslav Husak

Beilstein J. Nanotechnol. 2022, 13, 411–423, doi:10.3762/bjnano.13.34

Graphical Abstract
  • sensing mechanism of nanocomposite layers based on PANI was discussed in [10]. Polyaniline is known as one of the most famous p-type conductive polymers. During the exposure to a reducing gas (NH3), the emeraldine salt form of polyaniline is converted to the emeraldine base form leading to an increase in
PDF
Album
Full Research Paper
Published 27 Apr 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • osteochondral defects can be overcome by the versatile and efficient methods developed by TE technologies and will be discussed in detail. 3.1 Development of biomaterials using micro and nanostructures for cartilage TE Since Vacanti et al. reported the application of bioabsorbable artificial polymers as
  • purposes is the subject of many studies [19] in which natural polymers, synthetic polymers, or their combination were used to provide a biomimetic microenvironment, which not only includes biological cues, but also provides the desired mechanical properties. The progress in materials science has revealed
  • . Nanomaterials are defined by the National Nanotechnology Initiative as manufactured or natural materials that have at least one dimension between 1 and 100 nm [33][34][35][36][37][38][39][40][41][42][43][44][45][46]. Nanomaterials are classified as metals, polymers, or ceramics according to their structure and
PDF
Album
Review
Published 11 Apr 2022

Alcohol-perturbed self-assembly of the tobacco mosaic virus coat protein

  • Ismael Abu-Baker and
  • Amy Szuchmacher Blum

Beilstein J. Nanotechnol. 2022, 13, 355–362, doi:10.3762/bjnano.13.30

Graphical Abstract
  • assembly of macromolecular components is well-established with many other systems, including lipids, synthetic polymers, and peptides, but has been the subject of few studies with virus-like particles [28][29][30][31]. Lauffer and Shalaby reported that glycine-based molecules promoted the polymerization of
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • improve the surface charge density in the contact electrification process, it is necessary to expand the effective contact surface area by surface engineering of micro-/nanoscale structures [44][45][46]. There are various processes for the surface engineering of polymers with micro-/nanoscale structures
PDF
Album
Full Research Paper
Published 15 Mar 2022

Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals

  • Xiaoyan Ma,
  • Haoning Gong,
  • Kenji Ogino,
  • Xuehai Yan and
  • Ruirui Xing

Beilstein J. Nanotechnol. 2022, 13, 284–291, doi:10.3762/bjnano.13.23

Graphical Abstract
  • antioxidant peptides by proteases. The combination of liposomes or polymers with different payload materials has been reported, for example, PEG-modified liposomes loaded with resveratrol, layer-by-layer-coated gelatin nanoparticles, or Gelucire-based solid lipid and polymeric micelles [14][15][16][17][18][19
PDF
Album
Supp Info
Correction
Full Research Paper
Published 01 Mar 2022
Other Beilstein-Institut Open Science Activities