Search results

Search for "barrier" in Full Text gives 541 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • thickness with the junction barrier thickness t = 1.5 nm and the London penetration depth λL = 250–150 nm [38]. It can be seen from the figure that, for nitrogen temperatures, the Josephson junction can generally be considered as a short JJ. With the decrease in the temperature, its characteristic dimension
  • account the non-uniform distribution of currents flowing through the barrier, which is typical for bicrystal junctions [28][42][43]. However, if the junction length is of the order of the kink size and there is no external magnetic field, the long junction dynamics is close to that of a short one [39] and
PDF
Album
Full Research Paper
Published 23 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • resulting in more interaction sites at which analyte and sensor can interact. The authors termed the mechanism “random tunneling junction network”. Here, electron transport across the fractal structures is assumed to occur via tunneling. Different fractal dimensions lead to different Schottky barrier
  • heights across the film surface with few locations having a small barrier height depending upon fractal dimension and geometry. Such locations serve as sites with improved sensitivity and respond to the gas faster than other locations that have higher Schottky barrier heights. The gas sensing measurements
  • were composed of many well aligned nanorods. The variations in potential barrier height at the contacts of the nanorods gave excellent gas sensing results towards hydrogen sulfide (H2S). The sensitivity response of the ZnO dendrite sensor at room temperature and the variation in sensitivity at
PDF
Album
Supp Info
Review
Published 09 Nov 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • hierarchical architecture [2][11][12] as well as through nanostructuring [13][14][15]), retaining the hole mobility [16][17], and by improving the value of the Seebeck coefficient (by tuning the band structure [18] along with a large conduction (valence) band convergence [19][20], electron energy barrier
PDF
Album
Full Research Paper
Published 05 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • should be injected from the low-work-function metal cathode surface. Therefore, HTL should possess excellent charge mobility and maintain morphological stability. Moreover, it should have an appropriate highest occupied molecular level (HOMO), ensuring a low energy barrier for hole injection from the
  • , therefore, reduces the hole injection barrier, which in turn creates a more efficient transfer to the HTL. In the device configuration of Figure 6a, a graphene oxide–Au nanocomposite HIL inserted between ITO and NPB was used to enhance the EL of Alq3-based OLED [51]. The correlation between the wavelength
  • difference between the Fermi level of the cathode material and the LUMO level of the adjacent material in which electrons have to be transported. Therefore, decreasing the energy barrier between the cathode and the adjacent layer can increase the electron injection efficiency and, hence, the device
PDF
Album
Review
Published 24 Sep 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • , which yielded a dual targeting structure that was able to cross the blood–brain barrier, a significant obstacle when treating brain tumors. Similarly, an improved internalization of CUR-loaded MNP was also observed in HPAF-II and Panc-1 human pancreatic cancer cell lines (54.06% and 53.86%, respectively
PDF
Album
Review
Published 15 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • important challenges are Na dendrite formation, capacity fading, low electrochemical utilization of sulfur, large size and mass of sodium ions, and poor understanding of the formation of discharge products [18]. In addition, replacing metal Na anodes with safer materials is another critical barrier to
  • –Nafion membrane. Using this barrier, the capacity retention could be improved to 250 mAh·g−1 after 100 cycles. In spite of the improvement, the capacity value is still low because of the low Na+ diffusivity through the membrane and the insulating nature of Al2O3. Another approach to stable catholytes is
PDF
Album
Review
Published 09 Sep 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • in a high-vacuum coating unit. Thus, the Au/CuNiCoS4/p-Si photodiode device was fabricated. The schematic illustration of the photodiode device and a band diagram of the junctions, with bandgaps and energy levels is shown in Figure 1. The device has a barrier at the interfacial layer between Au and p
  • -Si. The interfacial layer might increase the barrier height between the Au and p-Si. Characterization XRD patterns of the thiospinel CuNiCoS4 nanocrystals were recorded with a Bruker D8 diffractometer, Cu Kα radiation (λ = 0.15418 nm). A FEI TALOS F200S tunneling electron microscope (TEM) was used to
  • its good response to increasing illumination power densities [8]. The diode parameters, such as ideality factor (n), series resistance (Rs), and barrier height (ϕb), of the fabricated Au/CuNiCoS4/p-Si device provide information to understand electrical characteristics. These parameters can be
PDF
Album
Full Research Paper
Published 02 Sep 2021

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • anodizing stage, the remaining Al was selectively dissolved in 10 vol % Br2 solution in CH3OH. Then, the barrier layer of the AAO template was removed by chemical etching in 3.5 M H3PO4 with electrochemical detection of the pore opening moment as described elsewhere [40]. The prepared AAO templates were
PDF
Album
Full Research Paper
Published 30 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • . Due to lowered diffusion barrier and adsorption energy, the two-dimensional molecular layers can be affected by dewetting and may change into three-dimensional clusters [47]. In return, the reduced molecule–surface interaction on insulating films or bulk insulators can stabilize highly reactive
  • , or metals [83]. Rothe et al. [84] demonstrated that semimetallic graphene is an appropriate buffer layer for the physical and chemical decoupling of rubrene from Pt(111). The strong molecule–surface interaction on Pt(111) is expressed by hit-and-stick adsorption due to a substantial diffusion barrier
PDF
Editorial
Published 23 Aug 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • series of studies on three-dimensional nanolaminated graphene–metal composites have been carried out. Several studies revealed that the graphene interface provides a barrier to impede the propagation of dislocations, and simultaneously enhances the mechanical properties of the composites [22][23][24][25
PDF
Album
Full Research Paper
Published 12 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • activation energies for 2D or 3D clusters will give a more detailed insight into the processes that control aggregation on the surface. However, this is out of the scope of the current study. Based on our findings MoS2 would be most suitable as a barrier+liner for a Co interconnect, although based on our
  • n = 1–4, at a perfect and a defective MoS2 monolayer. We have also compared these metals to Cun from our earlier work. MoS2 is of great interest for the barrier layer in semiconductor devices and as a support in catalysis, while Ru and Co are potential replacements for Cu as the interconnect metal
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • the majority of Ag will be cleared from the body through faeces [35], released Ag+ and its soluble complexes will be absorbed through passive or active transport [26]. It was also proposed that the AgNPs pass through the intestinal barrier [36][37]. Absorbed Ag will then interact with tissues and
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • of the HIM, junction barriers of width 1–2 nm were created, that is, narrow enough for the tunneling current to propagate. An overview of the sample and a schematic outlining the irradiation approach are shown in Figure 2d. The electronic properties of the junction barrier can be continuously tuned
  • resolution capability of the helium ion beam enabling the creation of a sharper energy barrier at the domain wall. Later work in this area employed similar helium ion doses (1–4 × 1015 ions/cm2) to locally reduce the perpendicular magnetic anisotropy in a Co/Pt multilayered thin film [50]. Here, patterns
PDF
Album
Review
Published 02 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • with pyrene and BT exhibited the best HER (177.50 μmol·h−1, 20 mg) due to low charge recombination and strong photoinduced charge transfer. Furthermore, DFT calculations (Figure 7) indicated that incorporating halogen atoms in both P43 and P44 (Figure 5) reduces the energy barrier for forming H
PDF
Album
Review
Published 30 Jun 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • results from the existence of a barrier for the photocurrent, which is effective for a high current density when the sample is illuminated by the solar spectrum. However, a small current density of the quantum efficiency measurement is able to pass the barrier [56]. Another possible reason for the above
PDF
Album
Full Research Paper
Published 28 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • excluded volume interaction). They were characterized by two types of interaction energy: between water and water (εww), and between Ag and water (εaw). It means that the total ε being a potential energy barrier for the movement of a given element is defined by the surroundings of this element [52]. The
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • hematopoiesis. The blood flow is supported by the nutrient arteries, which supply the marrow with nutrients, the periosteal artery, arterioles, and the capillary circulation, which forms a sinusoidal network of vessels comprising a single endothelial cell layer lacking supporting cells. The barrier between the
  • hematopoietic compartment and the blood circulation is commonly referred to as the marrow–blood barrier (MBB). The MBB is 2–3 µm thick. It is composed of the continuous vascular endothelium and the discontinuous adventitial reticular cell layer. Hence, it is relatively highly permeable to a wide variety of
  • circulation half-life of polystyrene colloidal particles [21][22]. In their experiments, besides the groundbreaking work on the steric barrier and the so-called “stealth” effect of the poloxamer, they have further noticed that the adsorbed poloxamer 338 and 407 shells directed the polystyrene beads to the
PDF
Album
Review
Published 29 Apr 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • high Curie temperature is necessary. Mn–Ge alloys epitaxially grown on Ge substrates have been shown to be promising candidates for such spintronic systems [11][12][13]. Transition metal germanides that have sharp interfaces and a tunable Schottky barrier, in particular, can advantageously replace
PDF
Album
Full Research Paper
Published 28 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • particles with a semiconductor. In accordance with the literature data, the role of nickel in increasing the sensory sensitivity is most likely associated with the spillover effect [60][61]. When interacting with a gas atom, the barrier height at the Ni/rGO interface decreases due to this effect (the
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • of a pulmonary disease, where the airway–mucus barrier is difficult to penetrate, nanoparticles in the size range of 200 nm are more effective in mucus penetration [20][37]. The effect of surface chemistry on the mechanism of NPs uptake is, however, not sufficiently understood yet. Understanding the
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • holds also for layered materials. Single-molecule prototypes or molecular nanostructures are often prepared on metals, which usually provide a sufficiently low diffusion barrier for efficient self-assembly and simultaneously allow for in-depth analysis through atomically precise tools from the family of
  • between the island and the surface and also a low barrier for island displacement. Further, from the analysis of the apparent height of the molecular island, an upright orientation of the molecules can be inferred. Such a behavior has been frequently reported for substrates on which the interaction
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • transferred charges and the corresponding CE mechanism in TENGs. The results shown in [90] suggest that the electron transfer dominates the CE process. The charge retention ability is attributed to the intrinsic potential barrier heights of the different materials, which can prevent the charge dissipation. As
  • material B by an enlarged energy barrier. This leads to A and B being positively and negatively charged, respectively (Figure 3-iii). As the temperature rises, the transferred electrons in B tend to more easily escape from the potential well and to be thermionically emitted into the air, leading to a
  • decreases in a low RH condition. As the RH increases, the hydroxy groups of the first physisorbed layer bond to water molecules, through hydrogen bonding, which also permeate into the interlayers of GO. The gradually absorbed water layer creates a uniform barrier layer for the induction of positive charges
PDF
Album
Review
Published 01 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • biosynthesis occurs outside of cells due to the presence of biomolecules [191], which depends on the type of cell culture used. For instance, cell-wall deficient cells are typically more inclined towards intracellular biosynthesis as the cell-wall is known to act as a barrier for the diffusion of metal cations
PDF
Album
Review
Published 25 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • found up to 24 h and even after 168 h of exposure the changes in the blocking behaviour were still minimal. This behaviour was also observed for protection against direct reduction of FTO. Keywords: Al2O3; atomic layer deposition (ALD); barrier properties; corrosion; electrochemistry; FTO
  • semiconducting electrodes, such as ZnO. Aluminium oxide is another promising candidate for this task. It is amphoteric but insoluble in aqueous media at a neutral pH value [8][9]. ALD oxide layers, including Al2O3, were used as barrier coatings on copper to protect against corrosion in 0.1 M NaCl [10]. As
  • that of pure FTO is higher than three. This means that there are B-type defects in the barrier film. These defects cause not only the delamination of the Al2O3 film from the FTO substrate, but also a slowdown of the charge-transfer kinetics (accompanied by a strong increase in ΔEpp). The Table 1 shows
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021
Other Beilstein-Institut Open Science Activities