Search results

Search for "electronic structure" in Full Text gives 243 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

  • Sebastian Koslowski,
  • Daniel Rosenblatt,
  • Alexander Kabakchiev,
  • Klaus Kuhnke,
  • Klaus Kern and
  • Uta Schlickum

Beilstein J. Nanotechnol. 2017, 8, 1388–1395, doi:10.3762/bjnano.8.140

Graphical Abstract
  • without [5] a chemical reaction between the metal surface and the adsorbed molecule and thus to a hybridization of the molecule with the underlying electron bath of the metal surface. To access the intrinsic electronic structure of molecules using STM, it has been shown that it is in most cases mandatory
PDF
Album
Full Research Paper
Published 06 Jul 2017

Two-dimensional silicon and carbon monochalcogenides with the structure of phosphorene

  • Dario Rocca,
  • Ali Abboud,
  • Ganapathy Vaitheeswaran and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2017, 8, 1338–1344, doi:10.3762/bjnano.8.135

Graphical Abstract
  • carrier mobilities. The variety of electronic properties carried by these compounds have the potential to broaden the technological applicability of two-dimensional materials. Keywords: electronic structure; phosphorene; two-dimensional materials; Introduction Over the last ten years, the interest in
  • electronic structure that are markedly different from those of graphene, with, for instance, the existence of a finite bandgap in the band structure [5]. One of the latest newcomers in the family of two-dimensional materials is phosphorene [6][7][8][9], which corresponds to a single layer of black phosphorus
PDF
Album
Full Research Paper
Published 29 Jun 2017

Adsorption characteristics of Er3N@C80on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy

  • Sebastian Schimmel,
  • Zhixiang Sun,
  • Danny Baumann,
  • Denis Krylov,
  • Nataliya Samoylova,
  • Alexey Popov,
  • Bernd Büchner and
  • Christian Hess

Beilstein J. Nanotechnol. 2017, 8, 1127–1134, doi:10.3762/bjnano.8.114

Graphical Abstract
  • herringbone reconstruction indicating that the molecule–substrate interaction is of considerable extent. Investigations concerning the electronic structure of Er3N@C80/Au(111) reveals spatial variations dependent on the termination of the Au(111) at the interface. Keywords: adsorption; Au(111); Er3N@C80
  • knowledge about the molecules’ behavior in interaction with possible electrode surfaces. One aspect regards the formation of one respectively two dimensional and addressable arrays. Another important issue concerns the elucidation of the system’s electronic structure and adsorption site dependent effects on
  • it. In order to examine the adsorption characteristics and the electronic structure of Er3N@C80 in consideration of adsorbate–substrate interaction, we performed scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) investigations on sub-monolayer covered W(110) and Au(111
PDF
Album
Full Research Paper
Published 23 May 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • synthesized through reduction and microwave heating [18]. The expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer
  • work for instance reported significant oxygen and carbon incorporation during typical PVD conditions, where substitutional doping of MoS2 with oxygen recently was shown to drastically alter its electronic structure [37][38][50]. Also key effects of, e.g., Nb or Na contamination on electronic properties
  • partly linked with add-atom incorporation or intercalation, also local variations in the structure of MoS2 layers could affect conduction: An expanded interlayer distance of 9.4 Å from molecular intercalation was previously shown to modify the electronic structure of layered MoS2 and to improve catalytic
PDF
Album
Full Research Paper
Published 22 May 2017

Stable Au–C bonds to the substrate for fullerene-based nanostructures

  • Taras Chutora,
  • Jesús Redondo,
  • Bruno de la Torre,
  • Martin Švec,
  • Pavel Jelínek and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 1073–1079, doi:10.3762/bjnano.8.109

Graphical Abstract
  • electronic-structure calculations based on DFT, focusing on fullerene molecules with vacancy defects where the missing C atoms result in increased reactivity and stronger binding with the substrate. We consider C59 molecules, resulting from the removal of a single C atom. While high-energy collisions can
  • energies of these two structures is (in the absence of van der Waals forces) close to zero. This indicates that changes in the electronic structure arising from the vacancy when it is oriented towards vacuum do not significantly affect the metal–molecule contact. In contrast to the value of the defect-down
PDF
Album
Full Research Paper
Published 17 May 2017

Energy-level alignment at interfaces between manganese phthalocyanine and C60

  • Daniel Waas,
  • Florian Rückerl,
  • Martin Knupfer and
  • Bernd Büchner

Beilstein J. Nanotechnol. 2017, 8, 927–932, doi:10.3762/bjnano.8.94

Graphical Abstract
  • on C60 and vice versa. After each MnPc or C60 deposition step C1s, N1s, Mn2p and Au4f core-level and valence-band photoelectron spectra were measured in order to follow changes of the electronic structure and to determine the energy level alignment at the interfaces. Results and Discussion In Figure
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2017

Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition

  • Alper Balkan,
  • Efe Armagan and
  • Gozde Ozaydin Ince

Beilstein J. Nanotechnol. 2017, 8, 872–882, doi:10.3762/bjnano.8.89

Graphical Abstract
  • coaxial nanotubes. As stated earlier, pHEMA is sensitive to humidity and swells or shrinks in response to the water level in the ambient. As humidity increases, pHEMA swells which results in an increased distance between each polymer chain, affecting the electronic structure of the nanotubes. The swelling
PDF
Album
Full Research Paper
Published 18 Apr 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • ] possess extraordinary physical, chemical and mechanical properties [3]. They are unique nanoscale objects, because their electronic structure (metallic or semiconducting) is solely dependent on the atomic structure [3][4]. Since the discovery of SWCNTs, attempts of many researchers have been aimed at
PDF
Album
Review
Published 11 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • the deposited pillar. The carbon K-edge provides information on the electronic structure of carbon and analysis of characteristic features contained within the energy loss near edge structure (ELNES) indicates whether carbon is amorphous, graphitic or diamond. Figure 3e shows the corresponding
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • molecular dynamics (AIMD) simulations in which the forces are calculated from the electronic structure on the fly were carried out as described previously [41] using the cp2k program packages [42]. AIMD simulation was started from a classical molecular dynamics simulation snapshot of 32 ion pairs of
PDF
Album
Full Research Paper
Published 29 Mar 2017

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • accelerate the surface reaction and the electron exchange between analyte and CNTs. Moreover, small gas molecules can strongly bond to transition metals thanks to their electronic structure and empty orbitals [17]. Therefore, CNTs decorated with metal NPs can improve the electrical properties and sensitivity
PDF
Album
Full Research Paper
Published 10 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • increased charge transfer and formation of chemical bonds between the dopant and adsorbate [6][32]. Moreover, changes in the electronic structure induced by adsorption of molecules are likely to modulate the conductivity of graphene [32]. According to the Raman analysis shown in Figure 1, the PLD process
PDF
Album
Full Research Paper
Published 07 Mar 2017
Graphical Abstract
  • detected and may cause an alteration in local subsurface electronic structure of the material. This is why there is natural tendency to search completely new or to modify recently developed technological methods. The preparation of novel SnO2 thin films with properties tuned to a particular application
  • . This water splitting was theoretically predicted by Xu at al. [29] to have an impact on both the chemical and electronic structure of the examined films. (This is to be discussed below). Of course one can state that the irreversibility of contamination is only a matter of annealing temperature but we
  • UHV annealing (outgassing) for verification of their behavior under real working conditions of a semiconductor-based device. Further, the reversibility of the exposure effects is carefully analyzed. The impact of the exposure is being scrutinized on the basis of the changes in the chemical/electronic
PDF
Album
Full Research Paper
Published 27 Feb 2017

Tailoring bifunctional hybrid organic–inorganic nanoadsorbents by the choice of functional layer composition probed by adsorption of Cu2+ ions

  • Veronika V. Tomina,
  • Inna V. Melnyk,
  • Yuriy L. Zub,
  • Aivaras Kareiva,
  • Miroslava Vaclavikova,
  • Gulaim A. Seisenbaeva and
  • Vadim G. Kessler

Beilstein J. Nanotechnol. 2017, 8, 334–347, doi:10.3762/bjnano.8.36

Graphical Abstract
  • the presence of different functional groups, arranged either as a “random forest” in the samples bearing methyl group, or as islands with distinctly different properties and structures. Therefore, such a surface is predisposed for specific adsorption interactions with molecules of different electronic
  • structure and especially different polarity. The molecules of n-hexane are capable of adsorption interactions due to dispersion forces, whereas interaction of acetonitrile with the surface is dominated by the basic properties of the nitrogen atom. Obviously, acetonitrile (as well as n-hexane) interacts with
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

Selective photodissociation of tailored molecular tags as a tool for quantum optics

  • Ugur Sezer,
  • Philipp Geyer,
  • Moritz Kriegleder,
  • Maxime Debiossac,
  • Armin Shayeghi,
  • Markus Arndt,
  • Lukas Felix and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2017, 8, 325–333, doi:10.3762/bjnano.8.35

Graphical Abstract
  • ; photodissociation; synthetic photo-tags; Introduction Chemistry builds on the fact that the electronic structure, dynamics and properties of molecules are determined or influenced by quantum effects. However, it has only recently been experimentally verified that also the translational motion of an entire complex
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2017

Tunable plasmons in regular planar arrays of graphene nanoribbons with armchair and zigzag-shaped edges

  • Cristian Vacacela Gomez,
  • Michele Pisarra,
  • Mario Gravina and
  • Antonello Sindona

Beilstein J. Nanotechnol. 2017, 8, 172–182, doi:10.3762/bjnano.8.18

Graphical Abstract
  • incident momentum q below 0.8 Å−1. For comparison purposes, the well-known intrinsic plasmonics of graphene are also reported. In the following, we briefly account for the theoretical tools that we have used to explore the electronic structure and dielectric properties of 5AGNR, 11AGNR and 4ZGNR, 10ZGNR
  • Figure 1). The converged electron densities are subsequently used to compute the Kohn–Sham (KS) electronic structure on a denser MP-mesh of 180 × 1 × 1 k-points, including up to 120 bands, which is enough to explore the dielectric properties of the GNRs at probing energies below ≈20 eV. The IR to THz
PDF
Album
Full Research Paper
Published 17 Jan 2017

Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor

  • Ivan V. Komissarov,
  • Nikolai G. Kovalchuk,
  • Vladimir A. Labunov,
  • Ksenia V. Girel,
  • Olga V. Korolik,
  • Mikhail S. Tivanov,
  • Algirdas Lazauskas,
  • Mindaugas Andrulevičius,
  • Tomas Tamulevičius,
  • Viktoras Grigaliūnas,
  • Šarunas Meškinis,
  • Sigitas Tamulevičius and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2017, 8, 145–158, doi:10.3762/bjnano.8.15

Graphical Abstract
  • be an ideal platform for the realization of the high-temperature zero-field quantum valley Hall effect [7]. From a practical point of view, the band gap opening in the electronic structure of graphene is quite attractive. It is expected that this will result in a new approach for application of
  • feature of the TG electronic structure is presence of the vHs. In Raman spectroscopy, the presence of the vHs yields the G-resonance [48]. It consists of a more than one order of magnitude enhancement of the G-band intensity when the excitation energy fits the vHs energy difference. Indeed, the domains
PDF
Album
Full Research Paper
Published 16 Jan 2017

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • ) while changes of the morphological and the electronic structure dominate in the case of B) and D). Surface phenomena determine the gas-sensor response in the case of decorated nano-heterostructures, D). As shown in [6], electron transfer over n–n-type heterojunctions can account for sensor sensitization
PDF
Album
Full Research Paper
Published 12 Jan 2017

Zigzag phosphorene nanoribbons: one-dimensional resonant channels in two-dimensional atomic crystals

  • Carlos. J. Páez,
  • Dario. A. Bahamon,
  • Ana L. C. Pereira and
  • Peter. A. Schulz

Beilstein J. Nanotechnol. 2016, 7, 1983–1990, doi:10.3762/bjnano.7.189

Graphical Abstract
  • infinite zigzag edged phosphorene nanoribbon of width NZ = 8, which is the number of zigzag chains along the ribbon. The tight-binding hopping parameters considered, as discussed below, are indicated in Figure 1b. The quite complex electronic structure of phosphorene, already at energy ranges rather close
  • to the Fermi energy, hinders a wider use of single-orbital tight-binding models in chasing the alluded electronic and transport properties of systems based on this new material. Nevertheless, the use of such model is well validated, by means of comparisons with first-principle electronic structure
PDF
Album
Full Research Paper
Published 13 Dec 2016

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • functional theory calculations. For the cluster with about 200 atoms in an effective electrostatic field formed by the rest of the simulated system the electronic structure was determined. The calculation show that for single-crystalline ZnO the energy difference between highest occupied molecular orbital
PDF
Album
Review
Published 07 Dec 2016

Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

  • Wojciech Maziarz,
  • Anna Kusior and
  • Anita Trenczek-Zajac

Beilstein J. Nanotechnol. 2016, 7, 1718–1726, doi:10.3762/bjnano.7.164

Graphical Abstract
  • electronic structure by improving electron migration from titanium dioxide to tin dioxide and promotes oxygen molecule adsorption at the surface [34]. The as-formed heterojunction (n–n type) affects the response due to the formation of the accumulation/depletion layer and increases the potential barrier at
PDF
Album
Full Research Paper
Published 15 Nov 2016

Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

  • Jakub S. Prauzner-Bechcicki,
  • Lukasz Zajac,
  • Piotr Olszowski,
  • Res Jöhr,
  • Antoine Hinaut,
  • Thilo Glatzel,
  • Bartosz Such,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2016, 7, 1642–1653, doi:10.3762/bjnano.7.156

Graphical Abstract
  • [27]. More detailed analyses of the electronic structure, molecular orientations, energy level alignment and charge transfer dynamics have been provided by Cao et al. [29][30]. The authors showed that strong coupling between the PTCDA molecules and the TiO2 substrate results in charge transfer time
  • [45]. These authors, in addition to investigating the growth mode of the FePc overlayers, also analysed their electronic structure in detail. The molecular films grow in a layer-plus-island mode, and in the observed layers, the molecular plane is parallel to the surface [45]. The molecules in the
  • first layer, resulting in the alteration of the electronic structure and charge transfer from the molecules, is a significant disadvantage [45]. The results obtained for metal-free phthalocyanines are in line with those mentioned above. Molecules in the first layer adsorb in a flat-lying geometry and
PDF
Album
Commentary
Published 09 Nov 2016

Filled and empty states of Zn-TPP films deposited on Fe(001)-p(1×1)O

  • Gianlorenzo Bussetti,
  • Alberto Calloni,
  • Rossella Yivlialin,
  • Andrea Picone,
  • Federico Bottegoni and
  • Marco Finazzi

Beilstein J. Nanotechnol. 2016, 7, 1527–1531, doi:10.3762/bjnano.7.146

Graphical Abstract
  • analysis proves that Zn-TPP molecules are deposited flat on the surface and the molecular skeleton is not significantly distorted, as observed when Zn-TPP is grown on other substrates for comparison. In this paper, we investigate the electronic structure of a Zn-TPP film, studying both normally occupied
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2016

Preparation of alginate–chitosan–cyclodextrin micro- and nanoparticles loaded with anti-tuberculosis compounds

  • Albert Ivancic,
  • Fliur Macaev,
  • Fatma Aksakal,
  • Veaceslav Boldescu,
  • Serghei Pogrebnoi and
  • Gheorghe Duca

Beilstein J. Nanotechnol. 2016, 7, 1208–1218, doi:10.3762/bjnano.7.112

Graphical Abstract
  • ) in molecular systems. The electron density distribution in the frontier orbitals of the enzyme–ligand complexes under study provides information about the donor–acceptor character of the interactions inside the complexes. The electronic structure calculations were carried out with Gaussian 09 using
PDF
Album
Full Research Paper
Published 24 Aug 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • electronic structure of the C K-edge in the nanocomposites was probed by electron energy loss spectroscopy, highlighting the key role of the MWCNT growth defects in anchoring HfO2 NPs. A combined optical emission and absorption spectroscopy approach illustrated that, in contrast to HfO2 NPs, the metallic
  • MWCNTs do not emit light but instead expose their discrete electronic structure in the absorption spectra. The hybrid material manifests characteristic absorption features with a gradual merger of the MWCNT π-plasmon resonance band with the intrinsic defect band and fundamental edge of HfO2. The
  • of symmetry. This implies a local change of the electronic structure [36] along with an increase in π mismatch. This in turn accentuates the reactivity of these MWCNTs and converts these defects into receptors for functional groups on the surface of the nanoparticles. Buckling and kinking of the
PDF
Album
Full Research Paper
Published 26 Jul 2016
Other Beilstein-Institut Open Science Activities