Search results

Search for "proliferation" in Full Text gives 171 result(s) in Beilstein Journal of Nanotechnology.

Silicon microgrooves for contact guidance of human aortic endothelial cells

  • Sara Fernández-Castillejo,
  • Pilar Formentín,
  • Úrsula Catalán,
  • Josep Pallarès,
  • Lluís F. Marsal and
  • Rosa Solà

Beilstein J. Nanotechnol. 2017, 8, 675–681, doi:10.3762/bjnano.8.72

Graphical Abstract
  • cell adhesion, morphology and proliferation were assessed, by comparing them to flat silicon substrates, used as control condition. Using human aortic endothelial cells, microscopy images demonstrate that the cellular response is different depending on the silicon surface, when it comes to cell
  • adhesion, morphology (alignment, circularity and filopodia presence) and proliferation. Moreover, these structures exerted no cytotoxic effect. Conclusion: The results suggest that topographical patterning influences cell response. Silicon groove substrates can be used in developing medical devices with
  • chemistry influence cellular behaviour such as adhesion, migration and proliferation [1][2][3][4][5][6]. It is important to understand and control cell behaviour by topography in order to modulate the functions of the cells. Cells react to topographic stimuli through a process known as mechanotransduction
PDF
Album
Full Research Paper
Published 22 Mar 2017

Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles

  • Olga Rotan,
  • Katharina N. Severin,
  • Simon Pöpsel,
  • Alexander Peetsch,
  • Melisa Merdanovic,
  • Michael Ehrmann and
  • Matthias Epple

Beilstein J. Nanotechnol. 2017, 8, 381–393, doi:10.3762/bjnano.8.40

Graphical Abstract
  • this protein family in humans are HTRA1 and HTRA2 that are both involved in tumour suppression and in the control of proliferation, migration, and neurodegeneration [31]. The HTRA1 gene (previously termed PRSS11) was initially identified in human fibroblasts [32]. Numerous experimental findings suggest
  • a tumour suppressor function for HTRA1. In various cancer types, an epigenetic silencing of HTRA1 has been observed. Moreover, a decreased HTRA1 expression is correlated both with a reduced response to chemotherapeutics and an augmented cell migration. Additionally, a reduced proliferation of tumour
PDF
Album
Full Research Paper
Published 07 Feb 2017

Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

  • Marco Salerno,
  • Amirreza Shayganpour,
  • Barbara Salis and
  • Silvia Dante

Beilstein J. Nanotechnol. 2017, 8, 74–81, doi:10.3762/bjnano.8.8

Graphical Abstract
  • surface roughness [3][4], the latter of which can play an important role in the adhesion and proliferation of cells [5][6][7]. The self-ordered nano-structured APA, also demonstrated recently as a possible nanolithographic mask [8][9] and for chemical sensors and biosensors [10], after coating with noble
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2017

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

  • Nadezhda M. Zholobak,
  • Anton L. Popov,
  • Alexander B. Shcherbakov,
  • Nelly R. Popova,
  • Mykhailo M. Guzyk,
  • Valeriy P. Antonovich,
  • Alla V. Yegorova,
  • Yuliya V. Scrypynets,
  • Inna I. Leonenko,
  • Alexander Ye. Baranchikov and
  • Vladimir K. Ivanov

Beilstein J. Nanotechnol. 2016, 7, 1905–1917, doi:10.3762/bjnano.7.182

Graphical Abstract
  • also known that the MTT assay is typically used for quantifying metabolically active cells, independently of proliferation [63]. Therefore, the highest concentration of sample that caused, in the treated cells, the activation of NADP-H-dependent oxidoreductases, not more than in the intact cells, was
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

  • Niina Halonen,
  • Joni Kilpijärvi,
  • Maciej Sobocinski,
  • Timir Datta-Chaudhuri,
  • Antti Hassinen,
  • Someshekar B. Prakash,
  • Peter Möller,
  • Pamela Abshire,
  • Sakari Kellokumpu and
  • Anita Lloyd Spetz

Beilstein J. Nanotechnol. 2016, 7, 1871–1877, doi:10.3762/bjnano.7.179

Graphical Abstract
  • cell proliferation thus seemed to be normal, the use of the LTCC package for the sensor chip was regarded as promising [23]. Here we have tested version 2 of the LTCC package made from DupontTM 951 LTCC tape instead of the Heraeus HeraLock® Tape HL2000 (no longer produced) used in our earlier version
PDF
Album
Full Research Paper
Published 29 Nov 2016

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on
  • following section, a brief summary of the most common methods for control of the surface biochemistry and of the mechanical properties of the substrate are given. 1.5 Surface (bio)functionalization The surface (bio)chemistry of a material may regulate cell adhesion, survival, proliferation and
  • ][173][174][175][176]. Thereby, a multitude of stimulating signals, such as messenger molecules, ECM, pulsatile blood flow and endogenous electrical fields exist in and around the vasculature [177][178][179]. Additionally, in blood vessels of healthy humans, the regulation of SMC proliferation and
PDF
Album
Review
Published 08 Nov 2016

Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles

  • Sylwia Kuśnieruk,
  • Jacek Wojnarowicz,
  • Agnieszka Chodara,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 1586–1601, doi:10.3762/bjnano.7.153

Graphical Abstract
  • proliferation of such malignant cells was inhibited more efficiently by the occurrence of the nanoscale effect than by HAp particle morphology [9]. Another study analyzed the effects of different sized nano-HAp – ranging from 20 to 80 nm – on the proliferation of bone-related cells (bone marrow mesenchyme stem
PDF
Album
Full Research Paper
Published 04 Nov 2016

Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

  • Tudor Braniste,
  • Ion Tiginyanu,
  • Tibor Horvath,
  • Simion Raevschi,
  • Serghei Cebotari,
  • Marco Lux,
  • Axel Haverich and
  • Andres Hilfiker

Beilstein J. Nanotechnol. 2016, 7, 1330–1337, doi:10.3762/bjnano.7.124

Graphical Abstract
  • ) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN
  • cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN. Keywords: endothelial cells; GaN nanoparticles; proliferation; surface functionalization; Introduction The development of new
  • the mechanical load of incorporated nanoparticles, which could result in reduced migration and slowed proliferation process with increasing quantities of incorporated nanoparticles [20]. When nanoparticles were added after the cellular layer reached 50% confluence, we clearly observed how the same
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2016

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • . Similar results were reported by Zhang et al. comparing 80 nm SiNPs with 500 nm SiNPs on HepG2 cells [40]. Those investigated particles affect cell viability and the proliferation potential in a size-ascending-dependent manner. Nevertheless, these data were only focusing on large differences in size and
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • conductive polymer nanocomposites can be produced. However, all these enhancements of the performance of polymers can only be achieved when the filler is uniformly dispersed and no agglomeration of filler in the polymer matrix takes place. MLG and CNTs have been reported to promote the proliferation of
PDF
Album
Full Research Paper
Published 12 Aug 2016

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • their cellular uptake, the mechanism of internalization, cytotoxicity, viability and proliferation of neural stem cells, and compared them to the commercially available dextran-coated nanomag®-D-spio nanoparticles. Results: Light microscopy of Prussian blue staining revealed a concentration-dependent
  • intracellular uptake of iron oxide in neural stem cells. The methyl thiazolyl tetrazolium assay and the calcein acetoxymethyl ester/propidium iodide assay demonstrated that poly(L-lysine)-coated maghemite nanoparticles scored better than nanomag®-D-spio in cell labeling efficiency, viability and proliferation
  • follow the stem cells through their migration, distribution, proliferation and differentiation is an essential prerequisite to characterize the biology and behavior of stem cells, to design the therapeutic approaches and minimize possible side effects [8][9][10]. Magnetic nanoparticles are widely used to
PDF
Album
Full Research Paper
Published 27 Jun 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • inhibited (79%) by silver nanoparticles (2–6 nm) [80]. Also, AuNPs have the ability to prevent vascular endothelial growth factor (VEGF)- and interleukin-1 beta (IL-1β)-induced proliferation and migration in bovine retinal pigment epithelial cells (BRPEs) through the suppression of the Src kinase pathway
PDF
Album
Review
Published 06 May 2016

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • expression. These stable alternations are not caused by changes to DNA sequence itself, but instead arise during development and cell proliferation [13][14]. DNA methylation is the one of the most extensively studied epigenetic mechanisms. Whether TiO2 NPs are able to induce neurotoxicity through altering
  • nasal administration for nine months, after which the glial cells showed over-proliferation and tissue necrosis was found in hippocampal area. Meanwhile, the expression of genes associated with neurotrophin signaling pathways, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF
  • tumor necrosis factor-α (TNF-α) in the mouse hippocampus was promoted. At the same time, histopathological changes were observed in the hippocampus; over-proliferation of glial cells, impaired nuclei, and cellular degeneration were observed, all of which contributed to neuro-inflammation. In addition
PDF
Review
Published 29 Apr 2016

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • about 2 h and increases at 3 h, with no detectable CFUs after 24 h of incubation (Table 3). Hence, according to our data on ns-ablated AgNPs, the minimum time necessary to achieve bactericidal effect was longer than 3 h. Nevertheless, such AgNPs are very quick at inhibiting bacterial proliferation, when
PDF
Album
Full Research Paper
Published 18 Mar 2016

Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

  • Balazs Farkas,
  • Marina Rodio,
  • Ilaria Romano,
  • Alberto Diaspro,
  • Romuald Intartaglia and
  • Szabolcs Beke

Beilstein J. Nanotechnol. 2015, 6, 2217–2223, doi:10.3762/bjnano.6.227

Graphical Abstract
  • similarity to the mineral constituent of human bones, are bioactive and can be fairly easily bioconjugated [1]. HA NPs can enhance cell proliferation in bone tissue regeneration [2]. Tissue engineering is an interdisciplinary field that combines the principles of life sciences and engineering to improve
  • of HA enhanced hydrophilicity and serum protein adsorption, and as a result, this increased pre-osteoblast cell attachment, spreading, and proliferation after four days of culture. Different technical routes have been explored for the synthesis of HA NPs, including mechanochemical synthesis [10
PDF
Album
Full Research Paper
Published 25 Nov 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • in the S or/and G2/M phases (Figure 6B,C). Additionally, the observed changes on the cell cycle distribution between control A549 cells and A549 cells treated with free calcitriol for 72 h were not significant (p > 0.05). These results are in agreement with the proliferation studies, where the A549
  • pancreatic cell lines, S2-013 and hTERT-HPNE, was reported. The in vitro proliferation assay showed that the encapsulation of calcitriol enhanced its antiproliferative activity. The efficient cell internalization by an endocytosis mechanism of PLGA NPs and their rapid endo-lysosomal escape observed in this
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • effect was caused by silver ions. However, it supports findings made on spermatogonial stem cells in vitro, which claimed a decrease in cell proliferation after AgNP exposure [40][41]. Observations concerning female reproductive organs are rather rare as most nanoparticle biodistribution studies have
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • molecules) formed by ionic cross-linking [40]. The proposed architecture is envisaged to enhance adhesion, proliferation, differentiation of osteoblasts, and thus ultimately, to achieve a better integration of the titanium implant into the bone tissue. Conclusion In the present contribution, we demonstrated
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • ) assay the cytotoxicity in vitro and the differential effect of different Ag contents in the ZnO nanoparticles affecting cell proliferation was analyzed. The photo-oxidation-mediated cytotoxicity of different NPs was investigated by irradiating the samples with daylight or keeping them in the dark. The
  • (565)NP control and Abs(565)blank represent the background optical density and was measured in NPs only and media only samples. HCEC cells were included as a normal control cell line. Mitochondrial function: cell survival and proliferation assay MTT assay was used to investigate mitochondrial function
PDF
Album
Full Research Paper
Published 26 Feb 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • biocompatibility of these NPs was investigated by standard MTT cell proliferation assay. Studies suggested that the cell viability was maintained at 83% even after a high dose of 500 µg·mL−1 of the nanocomposites. To check the applicability of these nanocomposites as fluorescence imaging agents, Gastric SGC7901
PDF
Album
Review
Published 24 Feb 2015

Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

  • Jennifer Y. Kasper,
  • Lisa Feiden,
  • Maria I. Hermanns,
  • Christoph Bantz,
  • Michael Maskos,
  • Ronald E. Unger and
  • C. James Kirkpatrick

Beilstein J. Nanotechnol. 2015, 6, 517–528, doi:10.3762/bjnano.6.54

Graphical Abstract
  • ® in the well was 0.04 mg/mL. Cytotoxicity, determination of cell viability: The viability of the cells was determined as described in our previous studies [9][10][11] using the CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS, Promega, G3582). After nanoparticle incubation, medium was
PDF
Album
Full Research Paper
Published 20 Feb 2015

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • nanoparticles. This was very much expected as the proliferation of hHSCs during the growth factor induced differentiation will decrease the amount of nanoparticles per cell division by a factor of 1/2. For the PLLA particles, the remaining amount was significantly higher than the negative control even after 11
  • . The hHSCs showed a great loss in particle payload during all three lineage differentiations. This is likely due to the high proliferation rates during the differentiation process. In other studies, this dilution due to proliferation activity of the cells has clearly been shown [28][29]. In the
  • the high expression of glycophorin A, which indicates that the erythrocyte differentiation is enhanced with PLLA–Fe particles. This can be explained by the fact that iron in this case is an essential compound for erythrocyte differentiation and, therefore, enhances proliferation in this direction
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • used a colorimetric (MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; Aqueous One Solution Cell Proliferation Assay, Promega, Germany) and a luminescence (ATPLite assay, PerkinElmer, Germany) based cytotoxicity assay. In this context, cells were
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots

  • Vladimir V. Breus,
  • Anna Pietuch,
  • Marco Tarantola,
  • Thomas Basché and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 281–292, doi:10.3762/bjnano.6.26

Graphical Abstract
  • proliferation, which was confirmed by fluorescence microscopy (Supporting Information File 1, Figure S1). We observed a small fraction of abnormally large cells (twice as large as the normal size), and cells with two nuclei after exposure to the 50 nM solutions of QDs (Supporting Information File 1, Figure S1
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • surface hydrophilicity by forming oxygen-containing groups at the surface and thus to improve cell adhesion and proliferation. The conditions of the plasma modification were properly adjusted in order to induce the desirable chemical surface changes while maintaining surface integrity and morphology. The
  • , which is more apparent in the case of the treated samples indicates the growth and proliferation of the cells in their new microenvironment. Cell adhesion and proliferation According to Figure 4c, fibroblasts seemed to be securely attached and spread on the surface, regardless of the surface treatments
  • . Interestingly, cells seemed to be attached and spread more on the plasma-treated scaffold surfaces compared to the untreated surfaces, during the first day. A notable enhancement of the spreading is observed in the following days, with higher cell confluency and proliferation in the treated scaffolds compared
PDF
Album
Full Research Paper
Published 22 Jan 2015
Other Beilstein-Institut Open Science Activities