Search results

Search for "electronic structure" in Full Text gives 243 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Modelling of ‘sub-atomic’ contrast resulting from back-bonding on Si(111)-7×7

  • Adam Sweetman,
  • Samuel P. Jarvis and
  • Mohammad A. Rashid

Beilstein J. Nanotechnol. 2016, 7, 937–945, doi:10.3762/bjnano.7.85

Graphical Abstract
  • experimentally arise naturally from the exploration of an asymmetric potential by a flexible tip and do not require consideration of the detailed electronic structure of the surface. By constructing artificial surface slabs utilising different elements of the full Si(111)-7×7 unit cell, we are able to examine
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2016

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • electrode/electrolyte interfaces based on first-principles electronic structure calculations. As Pb has been used as one of the metallic electrode materials, we have already studied the Pb self-diffusion on flat and stepped Pb surfaces [13] as this controls the growth mechanism of the contacts. The results
PDF
Album
Full Research Paper
Published 11 Apr 2016

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
PDF
Album
Review
Published 08 Mar 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • and interfaces is given by T. Seyller [52]. The electronic structure of SiC surfaces suffers from a strong electron correlation induced by a Mott–Hubbard metal–insulator transition [53] due to a half-filled and hence metallic band arising from dangling bonds. More refined studies employed a 2D Hubbard
  • also affecting the electronic structure at surfaces [56]. Especially carbon clusters are responsible for donor states in the lower part of the bandgap as well as a continuum of donor- and acceptor-type states in the central part of the band gap. Thus, the measurements presented here fit perfectly in
  • of NN,eff = 1.3 × 1016 cm−3. SiC JBS device structure Finally, we applied the technique to analyse the electronic structure of a complex SiC power semiconductor device. SiC material properties enable devices compatible with higher voltages and operating temperatures compared to traditional Si-based
PDF
Album
Full Research Paper
Published 28 Dec 2015

High electronic couplings of single mesitylene molecular junctions

  • Yuki Komoto,
  • Shintaro Fujii,
  • Tomoaki Nishino and
  • Manabu Kiguchi

Beilstein J. Nanotechnol. 2015, 6, 2431–2437, doi:10.3762/bjnano.6.251

Graphical Abstract
  • -binding to the electrodes. However, there are little direct experimental results revealing strong metal–molecule couplings. The electronic structure of molecular junctions including metal–molecule couplings can be characterized by current-voltage (I–V) characteristics of molecular junctions. Transition
  • from Equation 1 and Equation 2: Here, Γ = ΓL + ΓR, and α = ΓL/Γ. The parameters of electronic structure, Γ and ε0, of each states of the mesitylene junction are determined by fitting of the statistically averaged I–V curves with Equation 3. The fitting results are Γ_H = 0.15 eV, ε0_H = 0.31 eV for the
PDF
Album
Full Research Paper
Published 18 Dec 2015

Vibration-mediated Kondo transport in molecular junctions: conductance evolution during mechanical stretching

  • David Rakhmilevitch and
  • Oren Tal

Beilstein J. Nanotechnol. 2015, 6, 2417–2422, doi:10.3762/bjnano.6.249

Graphical Abstract
  • conductance in a similar way, possibly as a response to variations in the electronic structure of the stretched junction [27][36][37][38]. The examined evolution of the side peaks due to junction elongation reflects a simple linear response of inelastic conductance due to electron–vibration interaction as
PDF
Album
Full Research Paper
Published 17 Dec 2015

Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability

  • Claudia Struzzi,
  • Mattia Scardamaglia,
  • Axel Hemberg,
  • Luca Petaccia,
  • Jean-François Colomer,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 2263–2271, doi:10.3762/bjnano.6.232

Graphical Abstract
  • , generating an inductive effect on the overall electronic structure. While during the heating process, fluorine desorbs from the surface, oxygen atoms, which were participating in the plasma-generated C–O, stay bound. The oxygen-related states are no longer affected by the presence of fluorine and they are
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2015

Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001)

  • Anu Baby,
  • He Lin,
  • Gian Paolo Brivio,
  • Luca Floreano and
  • Guido Fratesi

Beilstein J. Nanotechnol. 2015, 6, 2242–2251, doi:10.3762/bjnano.6.230

Graphical Abstract
  • contributions by the core excitations from C1 whereas the y-direction one mainly by those from the carbon atoms C2, C4 and C6. Conclusion The pentacene/Al(001) system was studied by means of DFT methods in order to understand how the electronic structure of the V-shaped adsorbed molecule affects the XPS and the
PDF
Album
Full Research Paper
Published 27 Nov 2015

Nonconservative current-driven dynamics: beyond the nanoscale

  • Brian Cunningham,
  • Tchavdar N. Todorov and
  • Daniel Dundas

Beilstein J. Nanotechnol. 2015, 6, 2140–2147, doi:10.3762/bjnano.6.219

Graphical Abstract
  • = 0.36361. Noninteracting electrons are considered throughout. As in [13], we compress the chain to a lattice spacing of R = 2.373 Å to suppress a Peierls distortion and resultant band gap that form after geometry relaxation. Landauer steady state In the adiabatic steady-state method for the electronic
  • structure, we employ the Landauer picture of conduction. Here the electrodes are infinite, and electrons populate sets of stationary Lippmann–Schwinger scattering states, arriving from either side. The respective population functions, fL(E) and fR(E), correspond to the electrochemical potentials of the left
PDF
Album
Full Research Paper
Published 13 Nov 2015

A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

  • Houcine Labiadh,
  • Tahar Ben Chaabane,
  • Romain Sibille,
  • Lavinia Balan and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2015, 6, 1743–1751, doi:10.3762/bjnano.6.178

Graphical Abstract
  • their large surface-to-volume ratio and from confinement phenomena resulting in an atomic-like electronic structure with discrete energy levels. Thus, QDs have been widely studied for their fundamental properties and applications, mostly employed as emitters for biolabelling [3][5], light emitting
PDF
Album
Full Research Paper
Published 17 Aug 2015

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • atomic force microscopy (AFM) images, the microscopy knowledge about the local electronic structure of the system is extremely important. Full understanding of the electronic structure and properties of a large number of solids can be credited to first principles simulations, and more specifically
  • surface adsorbates [28], and nanosystems structured from misfit layer compounds [29]. Planar and bended misfit structures, such as tubes, scrolls or nanoparticles, with intriguing electronic and magnetic characteristics have been synthesized, while calculations explained their electronic structure and
PDF
Editorial
Published 10 Aug 2015

Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials

  • Xiaoxing Ke,
  • Carla Bittencourt and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2015, 6, 1541–1557, doi:10.3762/bjnano.6.158

Graphical Abstract
  • which attributes the deformation to lattice mismatch [79]. Whichever the driving force is, the geometric distortions in the graphitic lattice have been clearly evidenced by 3D TEM, indicating a significant difference in the electronic structure at the metal–CNT contact. The consequent resistance change
  • moving it from the nanometer scale [85] toward the atomic scale. 3.2 Advanced spectroscopy of carbon-based materials In contrast to structural imaging which uses elastically scattered electrons, chemical and electronic structure information can be obtained simultaneously using inelastically scattered
PDF
Album
Review
Published 16 Jul 2015

Current–voltage characteristics of manganite–titanite perovskite junctions

  • Benedikt Ifland,
  • Patrick Peretzki,
  • Birte Kressdorf,
  • Philipp Saring,
  • Andreas Kelling,
  • Michael Seibt and
  • Christian Jooss

Beilstein J. Nanotechnol. 2015, 6, 1467–1484, doi:10.3762/bjnano.6.152

Graphical Abstract
  • semiconductor 1 and 2, named Vbi,1 and Vbi,2 A model for the electronic structure of the interface has been developed by Anderson et al., assuming a sharp junction with band discontinuities [30]. For the derivation of the J–V curve, it is assumed that the transport mechanism is governed by injection over the
  • dependence of these parameters gives additional information about the electronic structure of the p–n interface and the transport mechanism across the interface. In inorganic junctions, the temperature dependence of the open circuit voltage is given by for JS << JSC. For a heterojunction, the low temperature
  • current. This can be discussed according to Figure 10, where the expected simplified band diagram of the manganite–titanate junction is shown for electro-chemical equilibrium and with applied voltage in both forward and reverse directions. We disregard here all changes of the electronic structure of the
PDF
Album
Full Research Paper
Published 07 Jul 2015

Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1413–1420, doi:10.3762/bjnano.6.146

Graphical Abstract
  • electronic structure of the prophyrin molecule. Then we study the electro-burnt graphene electrodes and finally the two-terminal device in which the anchor groups of the porphyrin molecule bind to the graphene electrodes by p-orbital overlap. We then discuss the contribution of each part of the molecule to
  • interactions. The central porphyrin is also connected to two side groups, which stabilize the molecule within the junction. We first use density functional theory (DFT) to study the electronic structure of the PM. To characterize the gas phase molecule, the isolated PM shown in Figure 1a is relaxed to reach
  • , the edges of the EBG are likely terminated by oxygen, especially close to the junction. Therefore, before studying the transport properties of the PM, we focus on the transport properties of the EBG electrodes with oxygen-terminated edges. Figure 3 shows the molecular and electronic structure of the
PDF
Album
Full Research Paper
Published 26 Jun 2015

Can molecular projected density of states (PDOS) be systematically used in electronic conductance analysis?

  • Tonatiuh Rangel,
  • Gian-Marco Rignanese and
  • Valerio Olevano

Beilstein J. Nanotechnol. 2015, 6, 1247–1259, doi:10.3762/bjnano.6.128

Graphical Abstract
  • quantum transport is needed in order to fully understand the behavior of the molecular junction as an electronic device. Thus, it is important to establish a relationship between the conductance and the electronic structure, for example, by determining the main constituents influencing the absolute value
  • . ΓL/R(ε) is the left/right-lead injection rate. is the retarded/advanced Green function for the central region. The quantities and ΓL/R(ε) can be obtained from the DFT electronic structure (i.e., the energies εn and wavefunctions ) of the central region containing an “extended molecule” and of the
  • reason, it is believed that the molecule itself and its electronic structure has a deep influence on the conductance. The interpretation of the conductance profile, , or of the zero-bias conductance, , is often carried out by referring to the projected density of states onto molecular orbitals (see next
PDF
Album
Full Research Paper
Published 02 Jun 2015

Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

  • Andrea Magri,
  • Pascal Friederich,
  • Bernhard Schäfer,
  • Valeria Fattori,
  • Xiangnan Sun,
  • Timo Strunk,
  • Velimir Meded,
  • Luis E. Hueso,
  • Wolfgang Wenzel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2015, 6, 1107–1115, doi:10.3762/bjnano.6.112

Graphical Abstract
  • electronic structure and microscopic properties between these two materials. The simulation of the charge mobility requires coupling of macroscopic system properties, such as the intrinsic bulk mobility, temperature, applied bias voltage, etc., with the microscopic (often local) properties, such as energy
PDF
Album
Full Research Paper
Published 05 May 2015

Electrocatalysis on the nm scale

  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2015, 6, 1008–1009, doi:10.3762/bjnano.6.103

Graphical Abstract
  • developed to a stage where a reliable description of complex surface structures and surface processes (at the solid–gas interface) is possible based on first-principles electronic structure theory (in particular, (periodic) density functional theory (DFT)), but it is also increasingly developing new
PDF
Editorial
Published 21 Apr 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • systems. Alternatively, graphene on SiC(0001) is a more promising candidate for applications [4][5]. But its electronic behaviour is still strongly affected by intrinsic properties of the substrate and the morphology of the interface [6]. Understanding the interplay between atomic and electronic structure
  • . For the first time we bring experimental data, that can distinguish the topographic landscape from the local electronic structure of SLG on a 6H-SiC(0001) substrate. At room temperature we employed a combined STM and dynamic atomic force microscopy (dAFM) based on the Q-plus sensor working under UHV
PDF
Album
Full Research Paper
Published 07 Apr 2015

Statistics of work and orthogonality catastrophe in discrete level systems: an application to fullerene molecules and ultra-cold trapped Fermi gases

  • Antonello Sindona,
  • Michele Pisarra,
  • Mario Gravina,
  • Cristian Vacacela Gomez,
  • Pierfrancesco Riccardi,
  • Giovanni Falcone and
  • Francesco Plastina

Beilstein J. Nanotechnol. 2015, 6, 755–766, doi:10.3762/bjnano.6.78

Graphical Abstract
  • some work on the cluster by core-ionizing one of its atoms to form a molecular cation. The valence electrons are then thrown out of equilibrium, tending to dynamically relax and compensate for the presence of a positive charge. To depict the rearrangement of the valence electronic structure, we use a
  • causes for this discrepancy are discussed in [18]. The valence states are of the form and , where and are the valence-eigenvectors of coefficients for C60 and , respectively. As shown in Figure 1, the valence electronic structure of the neutral and ionized clusters is made of discrete energy levels
  • Hamiltonians We have seen that the key ingredients of the work distribution (Equation 2) are the many-body states of the unperturbed and perturbed Fermi systems. In the following we will take the different physical situations set forth above. Specifically, we will first investigate the valence electronic
PDF
Album
Full Research Paper
Published 18 Mar 2015

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • electronic structure of materials; however they probe typically areas of larger than 50 × 50 µm2. By applying them for nanostructures or nanoparticles the electronic structure information will be averaged over different individual nanostructures. To investigate the electronic structure of isolated
  • affordable [21]. In the past, spectroscopic methods with high spatial resolution in the nanometer range were restricted to EELS microscopy [22][23] or scanning transmissions X-ray microscopes (STXM) [3][24]. These methods are well adapted to study the electronic structure of isolated nanostructures as their
  • capability to investigate cryogenic samples in the HZB-TXM, the electronic structure of individual hybrid colloid particles in their hydrated environment were analysed [63]. Here, the structural homogeneity of nanoparticles in the hybrid particle was examined. Nanoscale valence changes in resistive switching
PDF
Album
Review
Published 27 Feb 2015

Chains of carbon atoms: A vision or a new nanomaterial?

  • Florian Banhart

Beilstein J. Nanotechnol. 2015, 6, 559–569, doi:10.3762/bjnano.6.58

Graphical Abstract
  • characteristics in alkynes, in particular acetylene, the structure of sp1-hybridized carbon is addressed in many textbooks of chemistry although carbyne is not a standard phase of carbon like graphite or diamond. Two extreme cases for the electronic structure can be imagined, namely cumulene with double bonds
  • a voltage of 1 V, currents of typically less than 10 nA were measured. As mentioned above, Peierls distortion is an important effect that favours the electronic structure of polyyne. If tensile strain is induced by an external force, it is clear that the weaker single bonds will stretch by a larger
PDF
Album
Review
Published 25 Feb 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • tremendous attention among the researchers in the field of rare-earth-doped NPs for multicolor phosphor applications. The extraordinary enhancement in the luminescent property (ca. 5–6 times of the initial value) of these nanoscale materials was associated with the hybridization of the electronic structure
PDF
Album
Review
Published 24 Feb 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • electronic structure from alternating to equalized bonds. Keywords: carbon nanostructures; cumulenes; polyynes; Raman spectroscopy; sp-hybridized carbon systems; Review Introduction Over the last decades carbon nanostructures have been widely investigated for their unique properties and for their potential
  • information on the structure of CAWs including length, stability behavior and electronic structure changes induced by charge transfer effects. In particular, for different CAWs, the results of a combined standard Raman spectroscopy and surface enhanced Raman spectroscopy investigation at different excitation
  • Peierls distortion effects [73]. Examples of the extreme sensitivity of Raman spectroscopy to the carbon hybridization state, electronic structure and local order, are shown in Figure 3, where different carbon systems are characterized by well-defined Raman scattering features. In contrast to the other
PDF
Album
Review
Published 17 Feb 2015

Nanoparticle shapes by using Wulff constructions and first-principles calculations

  • Georgios D. Barmparis,
  • Zbigniew Lodziana,
  • Nuria Lopez and
  • Ioannis N. Remediakis

Beilstein J. Nanotechnol. 2015, 6, 361–368, doi:10.3762/bjnano.6.35

Graphical Abstract
  • then, Wulff shapes have been observed in a variety of microscopy experiments with nanoparticles. Some characteristic examples include Ru [24], Pt [25], Au [26][27][28][29][30], Ni [31] and Si [32] nanoparticles. The increase of computational power and the emergence of smart codes for the electronic
  • structure of materials allowed for calculations of interface tensions from first principles. These data were often used in Wulff constructions for the prediction of the shape of nanoparticles in a variety of environments. Some characteristic examples include supported Au [33][34], diamond [35], TiO2 [36
PDF
Album
Review
Published 03 Feb 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • the electronic structure of the system is relaxed in its presence. The core level binding energy is then computed from the total energy difference between a calculation with the core hole and a ground state calculation. More advanced methods aimed at directly simulating the dynamical screening of the
  • originally thought to be fundamentally unstable. When it was experimentally isolated by Geim and Novoselov in 2004 [6], an unprecedented amount of ongoing research activity was launched [8]. The interest was largely due to the unique electronic structure of graphene, whereby the charge carriers behave as
PDF
Album
Review
Published 15 Jan 2015
Other Beilstein-Institut Open Science Activities