Search results

Search for "plasmon resonance" in Full Text gives 218 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synergic combination of the sol–gel method with dip coating for plasmonic devices

  • Cristiana Figus,
  • Maddalena Patrini,
  • Francesco Floris,
  • Lucia Fornasari,
  • Paola Pellacani,
  • Gerardo Marchesini,
  • Andrea Valsesia,
  • Flavia Artizzu,
  • Daniela Marongiu,
  • Michele Saba,
  • Franco Marabelli,
  • Andrea Mura,
  • Giovanni Bongiovanni and
  • Francesco Quochi

Beilstein J. Nanotechnol. 2015, 6, 500–507, doi:10.3762/bjnano.6.52

Graphical Abstract
  • an extended time and inducing a suitable reduction of the regeneration time of the chip. Keywords: biosensors; nanodevices; plasmonics; sol–gel; thin films; Introduction Plasmonic nanostructures have gained increasing attention for their surface plasmon resonance (SPR)-related properties, which can
PDF
Album
Full Research Paper
Published 19 Feb 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • based on surface enhanced Raman scattering (SERS) enhancement [1][2][3], fluorescence [4][5], the surface plasmon resonance effect [6][7], mapping and imaging [8][9][10], to nanotechnology, with several works related to nanolithography [11][12], nanofocusing [13][14], nanolasers [15][16], waveguides [17
PDF
Album
Full Research Paper
Published 18 Feb 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • from NIR (1064 nm) to blue (458 nm) wavelengths, illustrating that this is not a resonance-activated effect [39]. When interacting with metal nanoparticles in solution, H-terminated polyynes promote colloid aggregation, which causes the plasmon resonance to broaden and shift from the visible to the NIR
PDF
Album
Review
Published 17 Feb 2015

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was
  • most promising strategy to defeat the limitations of TiO2. This is due to the characteristics of noble metals, which can drastically enhance the absorption of visible light through localized surface plasmon resonance effects (LSPRs) [23][24]. The LSPR absorption in noble metal NPs arise from the
  • efficiency was achieved by depositing Pd NPs on the surface of TiO2. This immense progress was attributed to the localized surface plasmon resonance that enables Pd NPs to absorb light in the visible region. This is attributed to an optical excitation that produces a coherent oscillation of free electrons in
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiOx

  • Sergio D’Addato,
  • Daniele Pinotti,
  • Maria Chiara Spadaro,
  • Guido Paolicelli,
  • Vincenzo Grillo,
  • Sergio Valeri,
  • Luca Pasquali,
  • Luca Bergamini and
  • Stefano Corni

Beilstein J. Nanotechnol. 2015, 6, 404–413, doi:10.3762/bjnano.6.40

Graphical Abstract
  • atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around
  • ; surface differential reflectivity; surface plasmon resonance; Introduction Nanoparticles (NPs) deposited on surfaces constitute a vast and important research field in material science having many applications in magnetic recording [1][2], catalysis [3], and photovoltaics [4][5][6][7][8][9]. For instance
  • , it was found that Au NPs [5] and Ag NPs [6] deposited on thin film- and wafer-based Si solar cells can enhance their photon absorption due to the occurrence of surface plasmon resonance (SPR), which serves to scatter the incident radiation in the UV–vis region and to increase the light trapping
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • relatively simple way by using extracts of oranges and pineapples as reducing agents. Size and shape of the particles depend mainly on the kind of fruit used in the chemical preparation process. The UV–vis absorption spectrum displays the surface plasmon resonance and also features in the UV, which can be
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • monolayer after incubation with CTAB-coated gold nanorods at different concentrations. Particles as well as aggregates are easily discernible due to their plasmon resonance. The particles arrange predominantly around the nucleus but are usually not found inside the nucleus. Recently, we carried out optical
PDF
Album
Full Research Paper
Published 20 Jan 2015

Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite

  • Ilka Kriegel and
  • Francesco Scotognella

Beilstein J. Nanotechnol. 2015, 6, 193–200, doi:10.3762/bjnano.6.18

Graphical Abstract
  • : active optical component; electronic band gap nanostructure; localized surface plasmon resonance; photonic crystal; Introduction Optical filters are fundamental components employed in almost all optical setups and devices. For example, they play a very important role in microfluidic devices, which are
  • of doped semiconductor nanostructures is the option to chemically and electrochemically modify their plasmon resonance frequencies by changing the material’s carrier density. For copper chalcogenide NCs, chemical manipulation has been demonstrated in response to oxidizing and reducing treatments [27
  • absorption was triggered through the addition of chemical agents, inducing oxidation and reduction. This in turn leads to a variation of the carrier density and a blue shift (for oxidation) or red shift (for reduction) of the plasmon resonance over a wide range of frequencies. Such observation underlines
PDF
Album
Supp Info
Full Research Paper
Published 16 Jan 2015

The fate of a designed protein corona on nanoparticles in vitro and in vivo

  • Denise Bargheer,
  • Julius Nielsen,
  • Gabriella Gébel,
  • Markus Heine,
  • Sunhild C. Salmen,
  • Roland Stauber,
  • Horst Weller,
  • Joerg Heeren and
  • Peter Nielsen

Beilstein J. Nanotechnol. 2015, 6, 36–46, doi:10.3762/bjnano.6.5

Graphical Abstract
  • experimental setups. Various techniques such as ITC (isothermal titration calorimetry), SPR (surface plasmon resonance), DCS (differential centrifugal sedimentation), QCM (quartz crystal microbalance), and FCS (fluorescence correlation spectroscopy) have been used to monitor the affinities of proteins for
PDF
Album
Full Research Paper
Published 06 Jan 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • compared to separated arrays of holes or caps. Optical spectroscopy and FDTD simulations reveal strong coupling between the gold caps and both Bloch Wave-surface plasmon polariton (BW-SPP) modes and localized surface plasmon resonance (LSPR)-type resonances in hole arrays when they are in close proximity
  • . The interesting and complex coupling between caps and hole arrays reveals the details of the field distribution for these simple to fabricate structures. Keywords: caps; colloidal lithography; hybridization; localized surface plasmon resonance; near field; SRO hole arrays; Introduction The
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

SERS and DFT study of copper surfaces coated with corrosion inhibitor

  • Maurizio Muniz-Miranda,
  • Francesco Muniz-Miranda and
  • Stefano Caporali

Beilstein J. Nanotechnol. 2014, 5, 2489–2497, doi:10.3762/bjnano.5.258

Graphical Abstract
  • substrate must exhibit a surface roughness at the nanometer level. In these nanoscale structures, the excitation of electrons from the metal surface by laser irradiation can be confined, resulting in plasmon resonance [16]. The existence of this resonance is a necessary condition to observe a SERS signal by
PDF
Album
Full Research Paper
Published 29 Dec 2014

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • ; gold; nanoparticles; Introduction Over the last decade, the biomedical applications for gold nanoparticles have become increasingly diverse due to their small size and plasmonic nature [1]. The plasmon resonance wavelength of the nanoparticle, which exhibits strong light scattering and absorption, can
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices

  • Stephanie Hirn,
  • Nadine Haberl,
  • Kateryna Loza,
  • Matthias Epple,
  • Wolfgang G. Kreyling,
  • Barbara Rothen-Rutishauser,
  • Markus Rehberg and
  • Fritz Krombach

Beilstein J. Nanotechnol. 2014, 5, 2440–2449, doi:10.3762/bjnano.5.253

Graphical Abstract
  • muscle of living mice [44]. This technique allowed us to record images of Ag-NPs and lung tissue without additional labelling, since Ag-NPs exhibit strong two-photon-induced photoluminescence and enhanced THG signals through surface plasmon resonance [45][46]. As shown by multiphoton microscopy, the Ag
PDF
Album
Full Research Paper
Published 18 Dec 2014

Low-cost plasmonic solar cells prepared by chemical spray pyrolysis

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Valdek Mikli,
  • Arvo Mere,
  • Ilmo Sildos and
  • Malle Krunks

Beilstein J. Nanotechnol. 2014, 5, 2398–2402, doi:10.3762/bjnano.5.249

Graphical Abstract
  • % increase (from 4.6 to 7.5 mA/cm2) of the short-circuit current density was observed when 2.5 mL of the precursor solution was deposited onto the rear side of the solar cell. Keywords: Au nanoparticles; chemical spray pyrolysis; extremely thin absorber; plasmon resonance; solar cell; Introduction The cost
  • -NP agglomerates of up to 200 nm can also be found, thus a size distribution of the of Au-NP agglomerates is also present. An increase in the particle size is likely to cause a red shift of the corresponding plasmon resonance, whereas a wide size distribution of Au-NPs and agglomerates is likely to
  • Au precursor solution (curve C), at least three separate bands emerge centered at around 650, 710 and 850 nm. Thus, the increase in the EQE in the red/infrared region (Figure 3) is likely due to the gain in optical absorptance induced by the surface plasmon resonance effect. For this effect to occur
PDF
Album
Letter
Published 12 Dec 2014

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • conjugation to Ag nanoparticles when combined to form Ag@Fe3O4 dumbbell-like hetero-nanoparticles [47]. Moreover, plasmonic photocatalysts combine two prominent features: a Schottky junction enhancing charge separation and surface plasmon resonance, which is responsible for strong absorption of visible light
  • the domain sizes of Au@MnO heterodimer nanoparticles in comparison to spherical Au nanoparticles. The shift of the absorption maximum amounts to 30 to 60 nm depending on the ratio of the domain sizes of Au and MnO. Mie’s theory describes the direct dependence of the surface plasmon resonance from the
  • interaction at the nano-interface as shown for the exceptionally large T2-relaxation times of Co@Fe2O3 as compared to commonly available iron based MRI agents [59]. The most common metal nanoparticles for optical imaging with a long history are gold nanoparticles owing to their strong surface plasmon
PDF
Album
Review
Published 05 Dec 2014

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • (CARS); nonlinear optical spectroscopies; sum-frequency generation (SFG); surfaces plasmon resonance; vibrational spectroscopies; Review 1. Introduction – linear vibrational spectroscopies A widespread approach in molecular analysis relies on the vibrational fingerprint of matter to obtain an intrinsic
  • of up to 1012 [7]. This is possible thanks to the strong electromagnetic (EM) field amplification achieved with surface plasmon resonances, especially when the field is confined in nanometric metallic structures under the form of a localized surface plasmon resonance (LSPR) [8][9][10][11][12][13][14
  • IR or spontaneous Raman spectroscopies. To push forward the performance of both techniques, the coupling of the molecular coherence and power-law intensity dependence with the near-field enhancement from surface plasmon resonance has been initiated, and some demonstrations of an extreme sensitivity
PDF
Album
Review
Published 28 Nov 2014

Hybrid spin-crossover nanostructures

  • Carlos M. Quintero,
  • Gautier Félix,
  • Iurii Suleimanov,
  • José Sánchez Costa,
  • Gábor Molnár,
  • Lionel Salmon,
  • William Nicolazzi and
  • Azzedine Bousseksou

Beilstein J. Nanotechnol. 2014, 5, 2230–2239, doi:10.3762/bjnano.5.232

Graphical Abstract
  • . Furthermore, the spin-state switching behavior was also observed due to plasmonic heating. Such devices that display synergy between plasmon resonance and molecular spin states may be of great interest for implementing detection or self-regulation strategies on-chip for the photothermal effect or, with an
  • diagram for an analog device but employing NR as the emitting material [30]. Adapted with permission from [28] and [30], copyright 2008 and 2013 Elsevier. a) SEM image of a gold nanorod array with 200 nm pitch. b) Extinction spectra of three nanorod arrays with different aspect ratios. c) Plasmon
  • resonance shift associated with the spin crossover of a 60 nm thin film deposited onto the nano-dot array displayed in a) as a function of temperature. Adapted with permission from [34], copyright 2013 The Royal Society of Chemistry. a) Schematic view of the molecular memory proposed by Zhang et al. At low
PDF
Album
Review
Published 25 Nov 2014

Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

  • Katarzyna Grochowska,
  • Katarzyna Siuzdak,
  • Peter A. Atanasov,
  • Carla Bittencourt,
  • Anna Dikovska,
  • Nikolay N. Nedyalkov and
  • Gerard Śliwiński

Beilstein J. Nanotechnol. 2014, 5, 2102–2112, doi:10.3762/bjnano.5.219

Graphical Abstract
  • characterized by a short-distance order (length scale ≈140 nm). For the NP shapes produced, an observably broader tuning range (of about 150 nm) of the surface plasmon resonance (SPR) band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which
  • surface plasmon resonance (SPR) peak around 520 nm resulted in the observable decrease of the film roughness and resistivity [14]. In case of nanostructuring of a thin Au film by a pulsed-laser beam passing through a pinhole (60 μm), the forced arrangement of nanospheres into micro-circular patterns due
  • the plasmon resonance peak resulting from repeated film deposition and laser annealing observed for the first time is reported. Results and Discussion Nanoparticle structures The photothermally stimulated patterning path from a thin metal film to a nanostructured array of particles is initiated by
PDF
Album
Review
Published 13 Nov 2014

Carbon nano-onions (multi-layer fullerenes): chemistry and applications

  • Juergen Bartelmess and
  • Silvia Giordani

Beilstein J. Nanotechnol. 2014, 5, 1980–1998, doi:10.3762/bjnano.5.207

Graphical Abstract
  • layers between the biomolecules and the gold surface of the sensor and led to an amplified signal of the biosensor, as determined by surface plasmon resonance spectroscopy. In addition, the biocompatibility of CNOs was investigated and found to be excellent. Environmental remediation: An application of
PDF
Album
Review
Published 04 Nov 2014

A study on the consequence of swift heavy ion irradiation of Zn–silica nanocomposite thin films: electronic sputtering

  • Compesh Pannu,
  • Udai B. Singh,
  • Dinesh. C. Agarwal,
  • Saif A. Khan,
  • Sunil Ojha,
  • Ramesh Chandra,
  • Hiro Amekura,
  • Debdulal Kabiraj and
  • Devesh. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 1691–1698, doi:10.3762/bjnano.5.179

Graphical Abstract
  • plasmon resonance [1], fast optical response [2], and superparamagnetism [3], strongly depend on shape, size, size distribution and the surrounding environment of the metal nanoparticles [4]. Thus, the properties of nanocomposites can be controlled by the variation of these parameters. Swift heavy ion
PDF
Album
Full Research Paper
Published 01 Oct 2014

The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands

  • Edwin J. Devid,
  • Paulo N. Martinho,
  • M. Venkata Kamalakar,
  • Úna Prendergast,
  • Christian Kübel,
  • Tibebe Lemma,
  • Jean-François Dayen,
  • Tia. E. Keyes,
  • Bernard Doudin,
  • Mario Ruben and
  • Sense Jan van der Molen

Beilstein J. Nanotechnol. 2014, 5, 1664–1674, doi:10.3762/bjnano.5.177

Graphical Abstract
  • networks by electron microscopy. a) SEM image of a 2D single-layer microcontact printed Au-NP–S-BPP array on a flat Si–SiO2 substrate; b) STEM-reference image of a Au-NP–S-BPP network area on a TEM grid substrate; c) local EDX analysis revealing the elemental composition. Surface plasmon resonance
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2014

Synthesis of hydrophobic photoluminescent carbon nanodots by using L-tyrosine and citric acid through a thermal oxidation route

  • Venkatesh Gude

Beilstein J. Nanotechnol. 2014, 5, 1513–1522, doi:10.3762/bjnano.5.164

Graphical Abstract
  • nm with a tail extending to higher wavelengths [40] and the solution of the composite material exhibited an absorption band in the region of 330–490 nm centered at 420 nm which is related to surface plasmon resonance of spherical Ag NPs [41][42]. The blue shift of the absorption band of Ag NPs from
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2014

Protein-coated pH-responsive gold nanoparticles: Microwave-assisted synthesis and surface charge-dependent anticancer activity

  • Dickson Joseph,
  • Nisha Tyagi,
  • Christian Geckeler and
  • Kurt E.Geckeler

Beilstein J. Nanotechnol. 2014, 5, 1452–1462, doi:10.3762/bjnano.5.158

Graphical Abstract
  • addition of 1 N HCl or 1 N NaOH. The UV–vis spectroscopic studies revealed that the intrinsic pH of the protein led to the formation of AuNPs with strong surface plasmon resonance (SPR) bands. However, at acidic, neutral and basic pH conditions, either AuNPs with weak SPR bands or no AuNPs were formed
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • ion beam induced growth of nanoparticles and structural modifications in the titania matrix. Keywords: noble metal–titania nanocomposite; surface plasmon resonance; swift heavy ions; Introduction Metal nanoparticles embedded in dielectric matrices in the form of nanocomposites have gained
  • dielectric constant of the embedding matrix [5][6]. As the dielectric constant in the expression for extinction coefficient (denominator), hence the refractive index of the matrix plays a very important role in surface plasmon resonance (SPR). Several dielectric matrices, such as SiO2 and polymers have been
  • ,b suggest that each spectrum mainly consists of two types of information, i.e., i) band-edge at lower wavelength (~320 nm) which is due to TiO2 matrix and ii) a peak in the visible–near infrared region (from about 580 nm to 650 nm for the different spectra) that arises from surface plasmon resonance
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • with incident electromagnetic waves at specific frequencies and induce a collective resonant absorption on the surface known as surface plasmon resonance [21]. Because of this feature, noble metals can serve as plasmon waveguides [22][23]. Especially, single-crystalline metallic materials are preferred
PDF
Album
Full Research Paper
Published 15 Aug 2014
Other Beilstein-Institut Open Science Activities