Search results

Search for "skin" in Full Text gives 182 result(s) in Beilstein Journal of Nanotechnology.

Cytotoxic and proinflammatory effects of PVP-coated silver nanoparticles after intratracheal instillation in rats

  • Nadine Haberl,
  • Stephanie Hirn,
  • Alexander Wenk,
  • Jörg Diendorf,
  • Matthias Epple,
  • Blair D. Johnston,
  • Fritz Krombach,
  • Wolfgang G. Kreyling and
  • Carsten Schleh

Beilstein J. Nanotechnol. 2013, 4, 933–940, doi:10.3762/bjnano.4.105

Graphical Abstract
  • profound chemical transformations in biological environments that can affect bioavailability and toxicity. In case of argyria, silver deposits in the skin are not translocated engineered AgNP, but rather secondary particles formed of silver metabolites resulting from partial AgNP dissolution and subsequent
PDF
Album
Full Research Paper
Published 19 Dec 2013

Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

  • Tanujjal Bora,
  • Karthik K. Lakshman,
  • Soumik Sarkar,
  • Abhinandan Makhal,
  • Samim Sardar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2013, 4, 714–725, doi:10.3762/bjnano.4.81

Graphical Abstract
  • small portion is excreted in the urine [2]. Excess bilirubin in blood can lead to deposits on tissues, which gives rise to neurotoxicity and hyperbilirubinemia and/or a yellowish pigmentation of the skin, a disease commonly known as jaundice. According to the World Health Organization, almost 30,000
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2013

Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

  • Bharat Bhushan,
  • Si Chen and
  • Shirong Ge

Beilstein J. Nanotechnol. 2012, 3, 731–746, doi:10.3762/bjnano.3.83

Graphical Abstract
  • /bjnano.3.83 Abstract Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale
  • friction and durability of damaged skin were measured and compared with those of virgin (intact/undamaged) skin. The effect of skin cream on friction and durability of damaged and virgin skin samples is discussed. The effects of velocity, normal load, relative humidity and number of cycles were studied
  • . The nanoscale studies were performed by using atomic force microscope (AFM), and macroscale studies were performed by using a pin-on-disk (POD) reciprocating tribometer. It was found that damaged skin has different mechanical properties, surface roughness, contact angle, friction and durability
PDF
Album
Full Research Paper
Published 08 Nov 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
PDF
Album
Video
Review
Published 29 Aug 2012

Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals

  • Adrian Klein and
  • Horst Bleckmann

Beilstein J. Nanotechnol. 2011, 2, 276–283, doi:10.3762/bjnano.2.32

Graphical Abstract
  • skin and are found in crustaceans [1], as well as in spiders and insects [2]. These sensors enable insects and spiders to perceive air displacements down to flow amplitudes of 30 μm/s [3]. Flow sensors are also found in fish and aquatic amphibians and are called lateral line neuromasts. With neuromasts
  • some fish can detect water surface waves with a displacement amplitude of only 0.01 μm [4]. Most lateral line neuromasts are located on the skin (superficial neuromasts or SN), but some are located in subepidermal canals (canal neuromasts or CN). A lateral line neuromast consists of up to several
PDF
Album
Full Research Paper
Published 06 Jun 2011

Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

  • Philipp Comanns,
  • Christian Effertz,
  • Florian Hischen,
  • Konrad Staudt,
  • Wolfgang Böhme and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2011, 2, 204–214, doi:10.3762/bjnano.2.24

Graphical Abstract
  • - or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales
  • . The integument consists of the skin and its derivatives such as scales, feathers, hairs and nails and has a variety of functions: Next to mechanical protection and prevention of water loss from lower tissue layers, it serves also for temperature regulation and as a transmitter for tactile stimuli. The
  • liquids is required. To gain a deeper insight of and understanding for moisture harvesting, we investigated the micro morphology of the skin of three lizard species known to perform moisture harvesting, viz. the iguanid Phrynosoma cornutum, and the two agamids Moloch horridus and Phrynocephalus arabicus
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2011

Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

  • Bharat Bhushan

Beilstein J. Nanotechnol. 2011, 2, 66–84, doi:10.3762/bjnano.2.9

Graphical Abstract
  • a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been
  • behavior of oil droplets on various superoleophobic surfaces created in the lab. Keywords: aquatic animals; biomimetics; drag; lotus plants; shark skin; superhydrophobicity; superoleophobicity; Introduction Biologically inspired design, adaptation, or derivation from nature is referred to as ‘biomimetics
  • sector-like scales with diameters of 4–5 mm covered by papillae 100–300 μm in length and 30–40 µm in width [18]. Shark skin, which is a model from nature for a low drag surface, is covered by very small individual tooth-like scales called dermal denticles (little skin teeth), ribbed with longitudinal
PDF
Album
Review
Published 01 Feb 2011
Other Beilstein-Institut Open Science Activities