Search results

Search for "therapy" in Full Text gives 236 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases

  • Oihane K. Arriortua,
  • Eneko Garaio,
  • Borja Herrero de la Parte,
  • Maite Insausti,
  • Luis Lezama,
  • Fernando Plazaola,
  • Jose Angel García,
  • Jesús M. Aizpurua,
  • Maialen Sagartzazu,
  • Mireia Irazola,
  • Nestor Etxebarria,
  • Ignacio García-Alonso,
  • Alberto Saiz-López and
  • José Javier Echevarria-Uraga

Beilstein J. Nanotechnol. 2016, 7, 1532–1542, doi:10.3762/bjnano.7.147

Graphical Abstract
  • , energy applied, or duration of the exposure could not be correlated with percentage of tumor necrosis. Further experiments would be needed to clarify the mechanism through which necrosis is achieved in order to improve the therapy. However, we find our results quite promising as the first steps to
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2016

Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

  • Mykola Borzenkov,
  • Anni Määttänen,
  • Petri Ihalainen,
  • Maddalena Collini,
  • Elisa Cabrini,
  • Giacomo Dacarro,
  • Piersandro Pallavicini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2016, 7, 1480–1485, doi:10.3762/bjnano.7.140

Graphical Abstract
  • number of printed layers, and, critically, on the permeability of the coated paper substrates. These results will promote the development of GNS-based printed platforms for local photothermal therapy. Keywords: gold nanostars; inkjet printing; localized surface plasmon resonance (LSPR); photothermal
PDF
Album
Supp Info
Letter
Published 19 Oct 2016

Microwave synthesis of high-quality and uniform 4 nm ZnFe2O4 nanocrystals for application in energy storage and nanomagnetics

  • Christian Suchomski,
  • Ben Breitung,
  • Ralf Witte,
  • Michael Knapp,
  • Sondes Bauer,
  • Tilo Baumbach,
  • Christian Reitz and
  • Torsten Brezesinski

Beilstein J. Nanotechnol. 2016, 7, 1350–1360, doi:10.3762/bjnano.7.126

Graphical Abstract
  • nanoparticles provide an attractive platform for future magnetic data storage and theranostics (that is, imaging and therapy in biomedicine). The challenges and prospects in using Fe-based nanoparticles for such applications have been described in excellent papers elsewhere and will therefore not be discussed
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2016

Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

  • Tudor Braniste,
  • Ion Tiginyanu,
  • Tibor Horvath,
  • Simion Raevschi,
  • Serghei Cebotari,
  • Marco Lux,
  • Axel Haverich and
  • Andres Hilfiker

Beilstein J. Nanotechnol. 2016, 7, 1330–1337, doi:10.3762/bjnano.7.124

Graphical Abstract
  • Academy of Sciences of Moldova under Grants 16.00353.50.08A and 15.817.02.29A and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) via the Cluster of Excellence, “From regenerative biology to reconstructive therapy” (REBIRTH). We would like to thank Erin C. Boyle for the critical
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • , myriads of applications. Medicine is one such field in which nanomaterials can help in therapy and diagnosis. Yet the unusual features of nanomaterials have raised natural concerns, especially regarding potential medical applications because of their exogenous origin and unknown physiology. Nevertheless
  • carbon nanotubes (CNT) drug and genetic material delivery, immunotherapy or photothermal cancer therapy [1][2]. The 'quantum leap' [3] of bionanomaterials has also affected magnetic resonance imaging (MRI). This technique, which has already matured into a basic diagnostic tool in medicine, has an edge
  • for the superparamagnetic properties of nanotube hybrids could be performed with a solid magnet which would attract the material when spread in a powdered form [32][34][38]. This visual effect encourages the exploitation of magnetic properties in synthesis and in therapy. Although they have not yet
PDF
Album
Supp Info
Review
Published 27 Jul 2016

The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes

  • Irina V. Martynenko,
  • Anna O. Orlova,
  • Vladimir G. Maslov,
  • Anatoly V. Fedorov,
  • Kevin Berwick and
  • Alexander V. Baranov

Beilstein J. Nanotechnol. 2016, 7, 1018–1027, doi:10.3762/bjnano.7.94

Graphical Abstract
  • confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy. Keywords: aggregation
  • tetrapyrrole molecules were of great interest due to their diverse application in many fields ranging from latest third generation solar cells [1][2][3] to photodynamic therapy (PDT) [4][5][6][7][8][9][10]. Currently, practically all PDT drugs are based on tetrapyrrole molecules. In the PDT process
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2016

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • labeling makes poly(L-lysine)-coated maghemite nanoparticles appropriate candidates for future neural stem cell in vivo tracking studies. Keywords: dextran; maghemite; nanoparticles; neural stem cells; poly(L-lysine); Introduction Stem cell-based therapy is a developing area of regenerative medicine with
PDF
Album
Full Research Paper
Published 27 Jun 2016

The role of morphology and coupling of gold nanoparticles in optical breakdown during picosecond pulse exposures

  • Yevgeniy R. Davletshin and
  • J. Carl Kumaradas

Beilstein J. Nanotechnol. 2016, 7, 869–880, doi:10.3762/bjnano.7.79

Graphical Abstract
  • ; Introduction Over the last decade the interaction of pulsed lasers with gold nanoparticles has been studied in many emerging fields, such as sensing and medical diagnostics and therapy [1][2]. This interest is sparked by the ability to overcome diffraction-limited optics and to control electromagnetic field
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2016

Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

  • Rina Kumari,
  • Sumit Singh,
  • Mohan Monisha,
  • Sourav Bhowmick,
  • Anindya Roy,
  • Neeladri Das and
  • Prolay Das

Beilstein J. Nanotechnol. 2016, 7, 697–707, doi:10.3762/bjnano.7.62

Graphical Abstract
  • therapy (PDT) applications as well as photocatalytic reactions. Keywords: DNA nanostructure; DNA–organic hybrid; DNA self-assembly; 2,6,14-triptycenetripropiolic acid; zinc protoporphyrin IX; Introduction Hybrid nanomaterials resulting from the covalent conjugation of DNA with organic molecules [1][2][3
  • average turn per base of DNA and the constituents of the system resulting from conformational strain. Catalytic activity of composite DNA nanostructures Considerable research efforts in the direction of controlled and improved ROS generation are being conducted for application in photodynamic therapy (PDT
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • Yue Zhang Wan-Xi Yang The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China 10.3762/bjnano.7.60 Abstract Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask
  • easily find them in, e.g., cosmetics [1], food additives [2], industrial process [3] and, especially, in medical therapy [4] and diagnostics [5]. In light of medical therapy, NPs have shown their extraordinary potential in cancer chemotherapeutics [6] and drug delivery systems [7], which successfully
  • defeat some of the drawbacks in traditional cancer chemotherapy (such as multidrug resistance (MDR) in tumors [6]). They can be modified to enhance the specificity of tumor therapy. Admittedly, no scientist could ignore its prominent latent prospect, but meanwhile numerous researches show their concerns
PDF
Album
Review
Published 06 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks
PDF
Album
Review
Published 25 Apr 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • currently in use for medical purposes [3], for example silver nanoparticles (AgNPs) and superparamagnetic iron oxide nanoparticles (SPIONs). AgNPs are exploited in medicine for biocidal therapy owing to their antibacterial, antifungal, antiviral, and anti-inflammatory properties. In addition, they attract
PDF
Album
Full Research Paper
Published 15 Feb 2016

Simultaneous cancer control and diagnosis with magnetic nanohybrid materials

  • Reza Saadat and
  • Franz Renz

Beilstein J. Nanotechnol. 2016, 7, 121–125, doi:10.3762/bjnano.7.14

Graphical Abstract
  • environment such as the one present in the cancer cell (Figure 1) [7][12]. Equipped with an alpha emitter [14], they could initiate an apoptosis of the tumor cells. This procedure may allow for combining diagnosis and therapy for cancer diseases. Results and Discussion We synthesized magnetite nanoparticles
PDF
Album
Supp Info
Letter
Published 27 Jan 2016

Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure

  • Martina Banchelli,
  • Bruno Tiribilli,
  • Roberto Pini,
  • Luigi Dei,
  • Paolo Matteini and
  • Gabriella Caminati

Beilstein J. Nanotechnol. 2016, 7, 9–21, doi:10.3762/bjnano.7.2

Graphical Abstract
  • ], optoelectronics [3], energy-harvesting applications [4], cancer imaging and therapy [5], sensing and biosensing applications [6][7]. In particular, sensors based on arrays of noble metal nanoparticles have become increasingly popular for the ultrasensitive detection of a variety of species ranging from small
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2016

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • resistance against almost all antibiotics [3]. As penicillin and other β-lactams were previously very efficient antibiotics in treating staphylococcal infections, the prevalent resistance of methicillin-resistant Staphylococcus aureus (MRSA) has made therapy continuously more complex [4]. S. aureus has also
  • widely known. Around the 1800s silver nitrate was commonly applied topically to treat burns and ulcerations or infected wounds, although its use declined following the introduction of antibiotics. Fox revived its use in the form of silver sulfadiazine, which is applied topically in burn therapy [23]. An
PDF
Album
Full Research Paper
Published 15 Dec 2015

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • photothermal therapy [16]. AuNPs exhibit well-defined optical properties such as surface plasmon resonance, which depends on the size and shape of nanoparticles, interparticle distance and the effective refractive index of the surrounding medium [17]. Different techniques have been used to assemble AuNPs on
PDF
Album
Full Research Paper
Published 10 Dec 2015

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • tracking [8], bioimaging [9] and photodynamic therapy [10]. Lanthanide-doped upconversion nanoparticles emit visible light upon excitation by near-IR light (NIR). Compared with organic dyes and semiconductor quantum dots, upconversion nanoparticles have attractive chemical and optical properties, as well
PDF
Album
Full Research Paper
Published 03 Dec 2015

An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2015, 6, 2173–2182, doi:10.3762/bjnano.6.223

Graphical Abstract
  • Calabria, Italy 10.3762/bjnano.6.223 Abstract Background: Nanoparticles can be used in biomedical applications, such as contrast agents for magnetic resonance imaging, in tumor therapy or against cardiovascular diseases. Single-domain nanoparticles dissipate heat through susceptibility losses in two modes
  • frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia. Keywords: hyperthermia; magnetic nanoparticles; relaxation process; specific loss power; susceptibility losses; Introduction Magnetic nanoparticles are important for
PDF
Album
Full Research Paper
Published 19 Nov 2015

Temperature-dependent breakdown of hydrogen peroxide-treated ZnO and TiO2 nanoparticle agglomerates

  • Sinan Sabuncu and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 1897–1903, doi:10.3762/bjnano.6.193

Graphical Abstract
  • has attracted a considerable amount of interest due to their potential application in drug systems [1], gene therapy [2], sensing [3], and paint and pigments [4]. Similar to other nanometer scale materials, they tend to agglomerate and form large aggregates during or after their preparation. The
PDF
Album
Full Research Paper
Published 14 Sep 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • paramagnetism, super saturation, and having free electrons, magnetic nanoparticles have emerged as promising candidates for various medical and biological applications including magnetic resonance imaging (MRI) (as a contrast agent), smart drug delivery (as drug carriers), gene therapy, hyperthermia and tissue
PDF
Album
Full Research Paper
Published 03 Aug 2015

Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD) for brain cancer

  • Ying Huang,
  • Jing Ma,
  • Alan L. Porter,
  • Seokbeom Kwon and
  • Donghua Zhu

Beilstein J. Nanotechnol. 2015, 6, 1666–1676, doi:10.3762/bjnano.6.169

Graphical Abstract
  • exposure of the pharmaceutical through controlled release. Thus, NEDD provides a novel approach to medical therapy, including treatment of chronic diseases and genetic disorders [5]. At the present, various kinds of nanoparticles have been developed as drug carriers, such as liposomes, micelles, polymeric
PDF
Album
Full Research Paper
Published 31 Jul 2015

Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure

  • Giovanni N. Roviello,
  • Domenica Musumeci,
  • Valentina Roviello,
  • Marina Pirtskhalava,
  • Alexander Egoyan and
  • Merab Mirtskhulava

Beilstein J. Nanotechnol. 2015, 6, 1338–1347, doi:10.3762/bjnano.6.138

Graphical Abstract
  • innovative biomedical strategies mainly in the field of anticancer therapy. Keywords: nucleopeptides; poly(rA) binders; RNA; self-structures; Review Polyadenylation in RNA processing Polyadenylation is part of the RNA processing pathway that leads to the production of mature mRNA molecules (Figure 1) [1
  • may result in a very efficient route for the development of novel drug families, useful for example in anticancer therapy and/or in a variety of other innovative and powerful biomedical applications. Thus, an extensive search for potential candidates selectively targeting these peculiar RNA sequences
PDF
Album
Review
Published 17 Jun 2015

PLGA nanoparticles as a platform for vitamin D-based cancer therapy

  • Maria J. Ramalho,
  • Joana A. Loureiro,
  • Bárbara Gomes,
  • Manuela F. Frasco,
  • Manuel A. N. Coelho and
  • M. Carmo Pereira

Beilstein J. Nanotechnol. 2015, 6, 1306–1318, doi:10.3762/bjnano.6.135

Graphical Abstract
  • cell morphological features. Keywords: 1α,25-dihydroxyvitamin D3; calcitriol; cancer therapy; drug delivery; poly(lactic-co-glycolic acid); Introduction Vitamin D3, a secosteroid hormone produced through sunlight exposure [1], can be found with different chemical structures: calciol or
  • targeting gene expression via both genomic and nongenomic pathways [1]. Although known as an important regulator of calcium homeostasis and bone mineralization [3], several studies support that vitamin D also plays a major role in tumor pathogenesis, progression and therapy [2]. Calcitriol is also regarded
  • therapy [22]. A few years later, Almouazen et al. developed a formulation using PLA nanoparticles of about 200 nm [14]. This study proved that PLA nanocapsules are a suitable choice for controlled delivery of antineoplastic agents, namely the nanoencapsulated calcidiol induced a significant growth
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • nanoparticles are almost biologically inert (unless they are very small) [13] and therefore widely used in tumor therapy, for drug delivery, or in imaging applications [3][14][15]. In principle, alloyed nanoparticles of silver and gold can combine and utilize the physicochemical properties of both metals, for
PDF
Album
Full Research Paper
Published 27 May 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • and therapy as well as drug delivery [12][13][14], but also for analytical applications [15] and nanoelectronics [16]. Silver nanoparticles have been developed for catalysis [17], optics [18] and electronics [19], but they are mainly employed in the medical sector and in consumer products for their
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015
Other Beilstein-Institut Open Science Activities