Search results

Search for "Al2O3" in Full Text gives 143 result(s) in Beilstein Journal of Nanotechnology.

Graphical Abstract
  • signifies the low electron affinity of the metal oxide to accept electrons. This means that the metal has a propensity of having a cationic charge, which leads to the catalytic power of metal cations. For example, in WO3, the metal alpha value is 7.2 and cell damage is −4.57. In contrast, Al2O3 with a metal
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • achieve precise optical characterization, one could employ spectroscopic ellipsometry (SE) with more refined division into sub-layers [26] and consider additional material properties, such as the anisotropy of PAAO [27] and the optical dispersion of the refractive index (RI) of Al2O3 [28]. However, for
  • anodization, however, the pores are filled with electrolyte and reaction products. Therefore the value neff = 1.65 used for in situ thickness control was higher than that of dry PAAO and lower than that of pure Al2O3. It resulted in satisfactory fits of the TMM model function to the recorded reflectance
PDF
Album
Full Research Paper
Published 31 Jan 2024

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • microenvironment. While several of these focused on stem cell differentiation [9][10], a couple of studies explored their effects on axonal guidance. Lee et al. [11] found that nanorough microridges composed of laser-patterned Al/Al2O3 nanowires increase cell attachment and effectively guide dorsal root ganglia
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • Kayhan Dagidir Kemal Bilen Department of Mechanical Engineering, Tarsus University, Mersin, Turkey Department of Mechanical Engineering, Ankara Yıldırım Beyazıt University, Ankara, Turkey 10.3762/bjnano.14.86 Abstract In this study, the use of nanolubricants containing Al2O3, graphene, and carbon
  • lubricant to determine the optimum nanoparticle mass fraction for each nanoparticle type. Thus, it was found that the compressor operated safely and efficiently with nanolubricants. Furthermore, the optimum mass fractions were determined to be 0.750% for Al2O3, 0.250% for graphene, and 0.250% for CNTs for
  • operating conditions of this study. As a result, the required electrical power of the compressor decreased by 6.26, 6.82, and 5.55% with the addition of Al2O3, graphene, and CNT nanoparticles at optimum mass fractions of 0.750, 0.250, and 0.250% to the lubricant, respectively, compared to the compressor
PDF
Album
Full Research Paper
Published 02 Nov 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • sample (alumina) (Figure 1a) shows single-phase θ-Al2O3, which is an alumina phase obtained through heat treatment above 900 °C [16]. In the diffractogram of sample 1 (Figure 1b), two phases are observed, θ-Al2O3 [96-120-0006] and eskolaite α-Cr2O3 [96-901-6564]. The crystal structure of the eskolaite
  • phase is that of corundum (Al2O3), based on a hexagonal matrix of oxygen with two thirds of the octahedral sites filled with Cr3+ ions [17]. The phase mixture observed in sample 2 (Figure 1c) consists of α-Al2O3 [96-900-8082] and hematite (α-Fe2O3) [96-591-0083]. The indexing of the hematite phase
  • Table 2. The relative amount of the coloring ions evaluated by XPS is approximately 12 wt % in both samples. The XPS spectra recorded in the Al 2p core level region (Figure 4a,b,d) show a peak fitted with one component centered at 73.6 eV. This component indicates the presence of Al2O3 in all samples
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • and copper amounts to θ ≈ 37°. Equation 1, however, requires clearly θ > 90°. The solution of this problem was to coat the copper surface with corundum (Al2O3), a material on which iron exhibits a contact angle of θ ≈ 130°. Equation 2 implies that the acute angle of the cone should then be in the
PDF
Album
Perspective
Published 17 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • capping with Al2O3 [12]. Theoretical works have also demonstrated that field-effect transistors (FETs) with single n-type trigonal Te NWs outperform the ones built with three trigonal Te NWs [14]. One important group of nanostructures, different from hollow nanotubes and solid nanowires, is NBs. NBs have
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • initial MLD reactions in titanicone film growth using three different surface models: anatase TiO2, rutile TiO2 and Al2O3. Calculated energetics show that while TiCl4 is reactive towards the anatase and rutile TiO2 surfaces, it is not reactive towards the Al2O3 surface. Ti(DMA)4 is reactive towards all
  • . In this study we investigate the molecular mechanism of formation of titanicone films on anatase TiO2, rutile TiO2 and Al2O3 surfaces using TiCl4 or Ti(DMA)4 as Ti source and EG or GL as organic components. Calculated energetics suggest a higher reactivity of Ti(DMA)4 towards the selected surfaces
  • ]. Titanicone films were modelled on an anatase TiO2 (101) surface with a coverage of 1 ML OH, rutile TiO2 (110) surface with a coverage of 0.75 ML OH, and an Al2O3 (0001) surface at a coverage 0.50 ML OH [50][51]. These surface models interact with titanium tetrachloride (TiCl4) and tetrakis(dimethylamido
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • structure. The research group also prepared chiral Al2O3 films by a similar process using SAMs of cysteine (Cys) and KAl2(AlSi3O10)(OH)2 precursors (Figure 10) [121]. The resultant Al2O3 films were efficiently deposited on the SAMs and formed a very smooth and conformal film with a thickness of (8.9 ± 0.1
  • ) nm. The QCM measurements exhibited a 690 ng/cm2 difference between the adsorption amount of ᴅ- and ʟ-tartaric acid, and it proved the enantioselective adsorption on the chirality imprinted Al2O3 films. Yemini et al. reported the fabrication of Zn/Cys chiral nanostructures by molecular layer
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • can be easily grown on substrates to form nanoscale networks and perform well in MEGs due to their unique electron transport properties [2][47][48]. This includes Al2O3 [49], MoS2 [50][51], Ni–Al layered double hydroxide (LDH) [52], MoS2/SiO2 composites [53], TiO2 [54], and Ti3C2Tx MXene nanosheets
  • [55]. A hydroelectric conversion device prepared by suction filtration of 200 nm Al2O3 nanoparticles provided an instantaneous electrical output of 4 V and 18 μA (Figure 4a). The Ni–Al layered double hydroxide material has a high specific surface area and provided a constant electrical output with a
  • is the highest instantaneous current measured in nanomaterial MEG devices. Moreover, the preparation method of metal compound nanomaterials is mature, and different morphologies can be obtained, such as nanoparticles of Al2O3, nanowires of TiO2, Ni–Al layered structures, and nanosheets of MXene
PDF
Album
Review
Published 25 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • stacks of the x-positioning unit are attached close to the top of the z-sliding unit (Figure 5a). The x- and y-sliders both use three shear piezo stacks and confine the motion along these directions by sliding an Al2O3 sphere attached to the shear stack inside a gap formed by two sapphire cylinders. The
  • sphere running on a hardened steel plate. Note that initially a sapphire plate was used. However, we found the plate cracked after a few days of piezo motor operation, presumably caused from an ultrasound-actuated contact resonance of the Al2O3 sphere on the sapphire plate arising from the triangular
PDF
Album
Full Research Paper
Published 11 Oct 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • : C4 PMMA; Wafer 2: B2 PMMA). Both wafers started with the patterning of Cr/Au contacts (deposited by magnetron sputtering) using direct-write laser lithography and ion milling. The fabrication of the two wafers followed slightly different steps, as described below. Wafer 1: A stopping layer (Al2O3
  • /TiWN/AlSiCu/TiWN) was patterned by lift-off, followed by the CVD growth of a multi-stack layer of SiO2 and Si3N4 to passivate the current lines. After this, a thin Al2O3 layer was deposited by sputtering and patterned by wet etching to protect the gate during the graphene etch. The C4 PMMA/graphene
  • films were then transferred onto the patterned wafer until all device areas were covered. After removing the PMMA, graphene was patterned using optical lithography and oxygen plasma etching. Finally, the sacrificial layer was removed by wet etching. Wafer 2: An additional layer of Al2O3 was deposited on
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids

  • Adil Loya,
  • Antash Najib,
  • Fahad Aziz,
  • Asif Khan,
  • Guogang Ren and
  • Kun Luo

Beilstein J. Nanotechnol. 2022, 13, 620–628, doi:10.3762/bjnano.13.54

Graphical Abstract
  • study was carried out with different shapes (i.e., cylinder, platelet, and sphere) of nanoparticles (Cu/Al2O3 with ethylene glycol as the base fluid) using the finite element method (FEM) in MAPLE 18.0. For mathematical modelling and simulation of hybrid nanofluids, Shah et al. [33] considered a two
  • conductive properties of base fluids. Raja et al. [34] carried out an experiment in which a comparative study of the thermal behaviour of normal and hybrid nanofluids (Al2O3/H2O, CuO/H2O and Al2O3–CuO/H2O) was observed. Hybrid nanofluids (Al2O3–CuO/H2O) showed greater enhancement in thermal properties than
  • other conventional nanofluids (CuO/H2O, Al2O3/H2O). However, the relationship between the increase in volume fraction and improved thermal properties remained linear. They also observed that experimental values were much higher than the values predicted by models presented in the literature. To further
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • prepared by flowing methane (CH4) at a rate of 40 sccm for 12 h at p = 200 mbar and a gas temperature of 1020 °C through a 20 mm diameter alumina (Al2O3) tube (15 mm internal diameter), which was then cooled under argon (Ar). Characterization The prepared glassy carbon microneedles were characterized by
PDF
Album
Full Research Paper
Published 19 May 2022

Selected properties of AlxZnyO thin films prepared by reactive pulsed magnetron sputtering using a two-element Zn/Al target

  • Witold Posadowski,
  • Artur Wiatrowski,
  • Jarosław Domaradzki and
  • Michał Mazur

Beilstein J. Nanotechnol. 2022, 13, 344–354, doi:10.3762/bjnano.13.29

Graphical Abstract
  • many preliminary experiments to find optimum conditions for the deposition of thin films with desired properties. For the deposition of AZO thin films by magnetron sputtering, the most commonly used targets are made of sintered zinc oxide powders and aluminum oxide (ZnO/Al2O3). The optimal percentage
  • the performed measurements, it was favorable to analyze the Al/Zn ratio because both elements are not light elements. However, it should be taken into account that AZO thin films are composed of at least 50 atom % O (ZnO/Al2O3 compound). In the case of the results here, the Al content should be at
PDF
Album
Full Research Paper
Published 31 Mar 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • methods of MOF membrane preparation require multiple steps and high-pressure conditions. In this study, a reliable one-step interfacial synthesis method under atmospheric pressure has been developed to prepare zeolitic imidazolate framework-8 (ZIF-8) membranes supported on porous α-Al2O3 disks. To obtain
  • order to understand (a) the relationship between synthesis method and intercrystalline structure, (b) the relationship between ZIF-8 crystal structural in the film and the associated gas separation performance, and (c) the effect of α-Al2O3 support on membrane separation performance, free-standing ZIF-8
  • films were synthesized via an interfacial method, while an interfacial method and a counter-diffusion method were adopted to synthesize α-Al2O3-supported ZIF-8 membranes for CO2/N2 gas separation. Materials and Methods Chemicals Zinc nitrate hexahydrate, 2-methylimidazole (2-MIM), sodium formate of
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • nanoelectrodes separated by gaps of 8 to 20 nm. They are fabricated by electron beam lithography (EBL) in a lift-off process while using a self-aligned Al2O3 hard mask to define the nanogap size [20][21]. The resulting nanoelectrode pairs are used for the on-chip preparation of Ru(TP)2-complex wires according to
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • were annealed at 550 °C for 15 min in air atmosphere. The formation of metallic nanostructures has been described in detail in our previous works [24][25][26]. On the prepared plasmonic platforms a dielectric buffer layer was deposited. We chose two kinds of layers. The first one, Al2O3, with different
  • strongly redshifted in comparison to plasmon platform characteristics (Figure 3). This phenomenon is directly related to Mie’s theory and can be caused by changes of the electric permittivity over the gold nanostructures [7][8][33]. A shift is also observed in structures with an additional ultrathin Al2O3
  • film. However, a blueshift occurs here due to the electrical properties of aluminum oxide. Additionally, it can be seen, that the position of the minimum of transmission as function of the Al2O3 film thickness. This may be explained by the different permittivity of the layers [34][35][36]. Emission and
PDF
Album
Full Research Paper
Published 22 Nov 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • resulting RT Na–S battery and the cycle performance. Another drawback is the lower theoretical cell capacity by not discharging until Na2S is formed. One approach to physically confine the catholyte is using membranes. Cengiz et al. [43] reported a RT Na–S battery with a Na2S5 catholyte confined by a Al2O3
  • –Nafion membrane. Using this barrier, the capacity retention could be improved to 250 mAh·g−1 after 100 cycles. In spite of the improvement, the capacity value is still low because of the low Na+ diffusivity through the membrane and the insulating nature of Al2O3. Another approach to stable catholytes is
PDF
Album
Review
Published 09 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • . Among others, ultrathin dielectric layers of either alkali halides (e.g., NaCl [17]) or metal oxides (e.g., MgO [18], Al2O3 [19], and CuO [20]), or nitrides (CuN [21]) have been shown to be beneficial for successfully reducing or even completely switching off the unwanted interaction between the metal
PDF
Editorial
Published 23 Aug 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • research groups. This technology was invented in the 1970s by Tuomo Suntola from Finland [4]. Thanks to the unique properties of this technology, materials produced by ALD quickly found a number of applications in PV. For example, ultrathin films of aluminium oxide (Al2O3) are used to passivate silicon
  • without separation. This is why the external quantum efficiency drops significantly in the wavelength region of 850–1200 nm. One of the methods of improving the operation of ZnO/Si cells in the infrared range is the “passivated emitter and rear cell” (PERC) technology [21][22]. Thin films of Al2O3 or
PDF
Album
Full Research Paper
Published 21 Jul 2021

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • the removal of the native oxide layer followed by an adequate surface passivation technique [13] and/or by a proper choice of the dielectric and its deposition method. Regarding the dielectric, the most common ones are aluminum oxide (Al2O3) and hafnium dioxide (HfO2) for which the preferable
  • improves optical and electrical properties of gallium arsenide-based devices [31][32][33]. In this work we examine the influence of the surface treatment of GaAs (cleaning, etching, and passivation) on the external quantum efficiency (EQE) results of the AZO/Al2O3/p-GaAs PV structures (in which AZO stands
  • preparation of the GaAs surface affect the EQE, a simple photovoltaic structure was developed (Figure 2). As an emitter/window, a transparent and thin AZO layer was applied (d ≈ 50 nm, n ≈ 3.66 × 1019 cm−3). Beneath it and directly on the recently prepared gallium arsenide surface, we deposited Al2O3 as the
PDF
Album
Full Research Paper
Published 28 Jun 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • and R = (42.6 ± 0.2) nm; and for the yellow/green region the parameters are f0 = 67.972 kHz, K = 2.18 N/m and R = (35.9 ± 0.2) nm. Similar to the case of Al2O3 (see Experimental section), the substrate region was set to εr = 1 since in this region there is only air between the probe and the gold
  • standard one present in the Asylum Cypher ES SPM. Al2O3 reference sample We made reference samples of a material with a well-known relative permittivity. Applying our method to this reference sample, we validated the technique presented in this paper. Our reference samples were photolithographically
  • defined disks of Al2O3 films with a radius of 5 µm deposited by ALD on Au/Cr (60 nm/20 nm)-coated silicon wafer pieces. The topographic image of an Al2O3 disk measured with AFM is shown in Figure 9a. The sample thickness was (21.0 ± 0.2) nm, relative to the gold surface. In the EFM mode, the microscope
PDF
Album
Full Research Paper
Published 28 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • , Technická 5, 166 28 Prague 6, Czech Republic 10.3762/bjnano.12.2 Abstract Al2O3 layers were deposited onto electrodes by atomic layer deposition. Solubility and electron-transport blocking were tested. Films deposited onto fluorine-doped tin oxide (FTO, F:SnO2/glass) substrates blocked electron transfer to
  • found up to 24 h and even after 168 h of exposure the changes in the blocking behaviour were still minimal. This behaviour was also observed for protection against direct reduction of FTO. Keywords: Al2O3; atomic layer deposition (ALD); barrier properties; corrosion; electrochemistry; FTO
  • semiconducting electrodes, such as ZnO. Aluminium oxide is another promising candidate for this task. It is amphoteric but insoluble in aqueous media at a neutral pH value [8][9]. ALD oxide layers, including Al2O3, were used as barrier coatings on copper to protect against corrosion in 0.1 M NaCl [10]. As
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021
Other Beilstein-Institut Open Science Activities