Search results

Search for "BiOI" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • , Bi2O3, BiFeO3, Bi2WO6, Bi2Mo3O12, Bi2MoO6, and BiOI [24][25][39][40][41][42][43][44][45]) using a variety of techniques to tailor their size, morphology, and optoelectrical properties to improve their photocatalytic performance and to better understand the factors influencing their performance
PDF
Album
Review
Published 03 Mar 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • from solution during in two hours, suggesting a greater photocatalytic effectiveness than that of pure BiOI. To deposit metallic Bi on Bi2WO6 nanosheets, an in situ reduction approach using NaBH4 as the reducing agent was used [64]. Compared to pure Bi2WO6, Bi-coated Bi2WO6 absorbs more visible light
  • , Huang et al. reported that BiOI microspheres served as self-sacrificing templates for in situ phase transformation and formation of phase junctions [81]. Different bismuth oxyiodides were formed as a result of this. Hierarchical BiOI, Bi4O5I2, Bi4O5I2–Bi5O7I phase-junction, and Bi5O7I may be synthesized
  • pollutants such as tetracycline hydrochloride, bisphenol A (BPA), and RhB was used to measure the photocatalytic activity of the bismuth oxyiodides. The activity decreased in the sequence Bi4O5I2–Bi5O7I > Bi4O5I2 > BiOI, which is linked to charge separation efficiency and band structure. Engineered Bi
PDF
Album
Review
Published 11 Nov 2022

Electronic properties of several two dimensional halides from ab initio calculations

  • Mohamed Barhoumi,
  • Ali Abboud,
  • Lamjed Debbichi,
  • Moncef Said,
  • Torbjörn Björkman,
  • Dario Rocca and
  • Sébastien Lebègue

Beilstein J. Nanotechnol. 2019, 10, 823–832, doi:10.3762/bjnano.10.82

Graphical Abstract
  • of AlOCl and BaFCl (not shown) are similar to the geometry of AcOCl. In Figure 2, we present also the structures of the iodide monolayers YOI and ScOI (the structures of BiOI and LaOI are similar to the one of YOI). It can be noticed that each monolayer has a thickness of five atoms with sublayers
  • the bottom of the conduction bands is a hybridization between the Cr (La, Ga or In) and the O atoms. We have performed a similar study in the case of the iodide monolayers. The corresponding DOSs and PDOSs of BiOI, LaOI, ScOI, and YOI are shown in Figure 6. For all the systems, we found that the
  • valence band is mostly dominated by states of O and I. While the conduction band bottom mainly derives from the states of Bi for BiOI, La for LaOI, Sc for ScOI and Y for YOI. In addition, we have computed the electronic band structures of the various monolayers along high-symmetry directions in the
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2019

Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity

  • Mengyuan Zhang,
  • Jiaqian Qin,
  • Pengfei Yu,
  • Bing Zhang,
  • Mingzhen Ma,
  • Xinyu Zhang and
  • Riping Liu

Beilstein J. Nanotechnol. 2018, 9, 789–800, doi:10.3762/bjnano.9.72

Graphical Abstract
  • , Thailand, Research Unit of Advanced Materials for Energy Storage, Chulalongkorn University, Bangkok, Thailand 10.3762/bjnano.9.72 Abstract In this paper, an efficient method to produce a ZnO/BiOI nano-heterojunction is developed by a facile solution method followed by calcination. By tuning the ratio of
  • Zn/Bi, the morphology varies from nanoplates, flowers to nanoparticles. The heterojunction formed between ZnO and BiOI decreases the recombination rate of photogenerated carriers and enhances the photocatalytic activity of ZnO/BiOI composites. The obtained ZnO/BiOI heterostructured nanocomposites
  • exhibit a significant improvement in the photodegradation of rhodamine B under visible light (λ ≥ 420 nm) irradiation as compared to single-phase ZnO and BiOI. A sample with a Zn/Bi ratio of 3:1 showed the highest photocatalytic activity (≈99.3% after 100 min irradiation). The photodegradation tests
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2018

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017
Other Beilstein-Institut Open Science Activities