Search results

Search for "GIXD" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • diffraction (GIXD) revealed a face-centred square grid structure with an average domain size of 3600 Å2. Makiura et al. employed a similar method to form multilayers of an oriented porphyrin-based MOF film on top of substrates by repeating transfer and washing of interfacially grown MOF layers (Figure 10
PDF
Album
Review
Published 30 Jul 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • represented in the scattering vector (qz) notation, where qz = 4π·sin(θ)/λ. Grazing incidence X-ray diffraction (GIXD) was performed to investigate the in-plane orientation of the crystallites, that is, with the crystallographic planes perpendicular to the substrate. The measurements were conducted at the
  • incidence X-ray diffraction (GIXD). In Figure 4, the in situ XRD measurements performed during the calcination procedure for the zincone-like layers under investigation are presented. In a reference ZnO powder (26170-ICSD [67]), peaks are generally observed at qz positions of 2.23 Å−1, 2.41 Å−1, and 2.54 Å
  • with the calcination temperature, suggesting a different preferential orientation of the ZnO grown under these conditions. In order to gather information also on the in-plane orientation of the ZnO crystallites, ex situ GIXD maps were acquired at synchrotron Elettra, Trieste, and are presented in
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • position of the 00L peaks in specular X-ray diffraction (XRD) as well as broad diffraction features in grazing incidence X-ray diffraction (GIXD) experiments (Figure 3). However, the process of layer preparation is well controlled, which is reflected by the highly smooth surfaces. The RT deposited films
  • thickness. The amorphous structure of the RT films is confirmed by the almost featureless GIXD image for the thicker 100 nm films (Figure 3b). For the 400 °C deposited 100 nm films the out-of-plane features in Figure 3c at qz of 0.9 Å−1 again indicate an increased interplanar d-spacing of 7.0 Å compared to
  • and a PANalytical PIXcel3D detector were used. Grazing incidence X-ray diffraction (GIXD) Grazing incidence X-ray diffraction (GIXD) measurements were performed at the KMC-2 beamline at BESSY II (Berlin, Germany) using X-rays with a wavelength of 1.00 Å and a 2D cross-wire detector (BRUKER). An
PDF
Album
Full Research Paper
Published 22 May 2017

Influence of calcium on ceramide-1-phosphate monolayers

  • Joana S. L. Oliveira,
  • Gerald Brezesinski,
  • Alexandra Hill and
  • Arne Gericke

Beilstein J. Nanotechnol. 2016, 7, 236–245, doi:10.3762/bjnano.7.22

Graphical Abstract
  • techniques as Brewster angle microscopy (BAM), infrared reflection–absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD). The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the
  • interesting calcium dependence was further investigated by means of grazing incidence X-ray diffraction (GIXD) at synchrotron facilities. The Langmuir trough is in an air-tight container filled with helium to avoid signal reduction due to absorption and scattering of photons in air. The incident beam is at an
  • the details of GIXD measurements and analysis can be found in [16][17][18]. Figure 6 is shown as an example of the results obtained for C1P at pH 4 with calcium in the subphase. The contour plots display the diffracted intensities versus the in-plane (Qxy) and out-of-plane (Qz) components of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2016

Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

  • Smita Mukherjee,
  • Marie-Claude Fauré,
  • Michel Goldmann and
  • Philippe Fontaine

Beilstein J. Nanotechnol. 2015, 6, 2406–2411, doi:10.3762/bjnano.6.247

Graphical Abstract
  • , results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters. Keywords: GIXD; Langmuir monolayers; silver clusters; TXRF; X-ray radiolysis; Introduction Formation of metal nanoclusters and
  • fluorescence signal (TRXF) simultaneously with the grazing incidence X-ray diffraction signal (GIXD) over a broad q-range covering the scattering wave vector transfer for the expected diffraction peak of 2D and 3D silver crystals. Figure 2, Figure 3 and Figure 4 present the diffraction spectra at different
  • monolayer. GIXD was used to obtain in-plane information about the molecular structure of the surface. The spectra were obtained by varying the X-ray, momentum transfer, in-plane component qxy that is parallel to the air–water interface. The scattered intensity was measured as a function of the angle, 2θ
PDF
Album
Full Research Paper
Published 15 Dec 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • self-organized Si NR array (pitch: 5 ∙ ≈ 2 nm) with a single domain orientation. This structure was confirmed by surface diffraction techniques (low energy electron diffraction, LEED and grazing incidence X-ray diffraction, GIXD) and large scale STM images [24][26]. The sharp spots of the 5 × 2
  • superstructure displayed in LEED patterns and the narrow GIXD diffraction peaks associated with the 5× periodicity of the superlattice confirm the high structural order of the Si grating. It should be noted that to date, despite the numerous experimental and theoretical investigations on the Si/Ag(110) interface
PDF
Album
Full Research Paper
Published 19 Mar 2015
Other Beilstein-Institut Open Science Activities