Search results

Search for "KPFM" in Full Text gives 54 result(s) in Beilstein Journal of Nanotechnology.

Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

  • Miriam Jaafar,
  • Oscar Iglesias-Freire,
  • Luis Serrano-Ramón,
  • Manuel Ricardo Ibarra,
  • Jose Maria de Teresa and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2011, 2, 552–560, doi:10.3762/bjnano.2.59

Graphical Abstract
  • microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an
  • array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample. Keywords: electrostatic interaction; focused electron beam induced deposition
  • magnetic field during the MFM operation [14][15][16]; (ii) performing a combination of Kelvin probe force microscopy (KPFM) [17][18] and MFM to compensate the electrostatic contribution to the frequency shift signal. In the first method the evolution of the MFM signal with the magnetic field is a signature
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2011

The role of the cantilever in Kelvin probe force microscopy measurements

  • George Elias,
  • Thilo Glatzel,
  • Ernst Meyer,
  • Alex Schwarzman,
  • Amir Boag and
  • Yossi Rosenwaks

Beilstein J. Nanotechnol. 2011, 2, 252–260, doi:10.3762/bjnano.2.29

Graphical Abstract
  • cantilever in quantitative Kelvin probe force microscopy (KPFM) is rigorously analyzed. We use the boundary element method to calculate the point spread function of the measuring probe: Tip and cantilever. The calculations show that the cantilever has a very strong effect on the absolute value of the
  • measured contact potential difference even under ultra-high vacuum conditions, and we demonstrate a good agreement between our model and KPFM measurements in ultra-high vacuum of NaCl monolayers grown on Cu(111). The effect of the oscillating cantilever shape on the KPFM resolution and sensitivity has been
  • calculated and found to be relatively small. Keywords: boundary elements method; cantilever; convolution; Kelvin probe force microscopy; point spread function; Introduction The effect of the measuring probe in electrostatic force based microscopies, such as Kelvin probe force microscopy (KPFM) [1], is very
PDF
Album
Full Research Paper
Published 18 May 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning
  • tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in
  • aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully
PDF
Album
Review
Published 03 Jan 2011

Scanning probe microscopy and related methods

  • Ernst Meyer

Beilstein J. Nanotechnol. 2010, 1, 155–157, doi:10.3762/bjnano.1.18

Graphical Abstract
  • molecules on surfaces. AFM has evolved considerably in the last few years, where new operation modes, such as non-contact force microscopy (nc-AFM), Kelvin probe force microscopy (KPFM) or friction force microscopy (FFM), were developed. One main focus is the high resolution capabilities of nc-AFM, which
  • structure of oxides is explored by the combination of nc-AFM. Colour centres are characterized by KPFM and tunnelling spectroscopy. The arrangement of molecules on insulators is another type of application, which is discussed in the present Thematic Series. The ability to measure across phase transitions
  • Microscopy, FMM: Force Modulation Microscopy, ic-AFM: intermittent contact AFM, TMAFM: tapping mode AFM, nc-AFM: non-contact AFM, KPFM: Kelvin probe force microscopy, EFM: Electrostatic force microscopy, MFM: Magnetic force microscopy, MRFM: Magnetic resonance force microscopy, NSOM: Near-field scanning
PDF
Album
Editorial
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities