Search results

Search for "MEMS/NEMS" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • development of new materials and microelectromechanical and nanoelectromechanical systems (MEMS/NEMS), MEMS devices have become an essential part of flexible electronic systems. Common flexible MEMS devices are based on electrostatic, piezoelectric, and thermal actuation. Electrostatic actuation is one of the
  • effect The pull-in effect is a common phenomenon occurring in magnetostatic actuators, dielectric elastomer actuators, and electrostatic actuators, which can cause failure [1]. Electrostatic pull-in is a nonlinear effect caused by intensive electromechanical coupling, a unique characteristic for MEMS
  • /NEMS devices, which break down before the pull-in occurs on the macroscale. Figure 1 shows the lumped parameters model [11] of electrostatically driven parallel plate actuators. The structure consists of two parallel plates. The upper plate is suspended by a spring above the lower plate, which is fixed
PDF
Album
Review
Published 12 Apr 2022

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • nanoelectronics and for the newer fields of micro and nanoelectromechanics (MEMS/NEMS). The current state of the art in EBL tools is represented by the EBPG5200 system from Raith GmBH which provides a high-intensity beam from a LaB6 thermal field emitter (TFE) electron source at energies up to 100 keV and is
PDF
Album
Review
Published 14 Nov 2018

Light–Matter interactions on the nanoscale

  • Mohsen Rahmani and
  • Chennupati Jagadish

Beilstein J. Nanotechnol. 2018, 9, 2125–2127, doi:10.3762/bjnano.9.201

Graphical Abstract
  • century. Laser processing of thin-film multilayer structures has been one of the initial research directions in photonics [2]. This technique has been employed for many applications, including but not limited to the fabrication of polycrystalline silicon (poly-Si) thin-film transistors or MEMS/NEMS
PDF
Editorial
Published 10 Aug 2018

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal 10.3762/bjnano.8.197 Abstract In recent years, with the development of micro/nanoelectromechanical systems (MEMS/NEMS), the demand for efficient lubricants of silicon surfaces intensified
  • /metal tribological pairs. However, the need for efficient lubrication of silicon surfaces rose with the development of micro/nanoelectromechanical systems (MEMS/NEMS) [21]. These miniaturized devices demand lubricants of high performance because the large surface-to-volume ratios may cause serious
PDF
Album
Full Research Paper
Published 20 Sep 2017

Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results

  • Babak B. Naghshine and
  • Amirkianoosh Kiani

Beilstein J. Nanotechnol. 2017, 8, 1749–1759, doi:10.3762/bjnano.8.176

Graphical Abstract
  • Si layer with a phosphorus- or boron-containing liquid before laser processing the surface for n- and p-type TFTs respectively [8]. Another important application is mask repairing for MEMS/NEMS device fabrication [4]. There are also many potential applications in biomedical engineering. It’s been
PDF
Album
Full Research Paper
Published 24 Aug 2017

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • -mechanical systems (MEMS/NEMS) have been realized and widely used. As a significant branch of MEMS/NEMS, micro/nanofluidic systems incorporating micro/nano pumps, valves, mixers, and channels have wide applications, such as micro heat exchangers, drug delivery systems, and lab-on-a-chip bioanalysis [1][2
PDF
Album
Full Research Paper
Published 24 Nov 2015

Organic and inorganic–organic thin film structures by molecular layer deposition: A review

  • Pia Sundberg and
  • Maarit Karppinen

Beilstein J. Nanotechnol. 2014, 5, 1104–1136, doi:10.3762/bjnano.5.123

Graphical Abstract
PDF
Album
Review
Published 22 Jul 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
  • slip; electrowetting; nanobubbles; surface charge; Introduction The interface of solid and liquid plays an important role in liquid flow in various fluidics based micro/nano-electro-mechanical systems (MEMS/NEMS), which have a large surface area to volume ratio [1][2]. At the interface of solid and
PDF
Album
Review
Published 15 Jul 2014

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • nanoscale with AFM as well as on the macroscale by using a ball-on-flat tribometer to relate friction and wear reduction on the nanoscale and macroscale. Results indicate that the addition of Au nanoparticles reduces friction and wear. Keywords: AFM; drug delivery; friction; gold nanoparticles; MEMS/NEMS
  • ; nanomanipulation; Introduction Nano-objects are continually studied in tribological applications and increasingly in other applications that require controlled manipulation and targeting in liquid environments. The need for suitable forms of lubrication for micro/nanoelectromechanical systems (MEMS/NEMS) and the
  • to the commercialization of MEMS/NEMS [1]. As one moves from the macroscale to the micro/nanoscale, surface to volume ratio increases. Therefore, adhesive and friction forces, which are dependent on surface area, become more significant. With MEMS/NEMS devices, the initial start-up forces and torques
PDF
Album
Full Research Paper
Published 15 Nov 2012
Other Beilstein-Institut Open Science Activities