Search results

Search for "MOFs" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

Uniform cobalt nanoparticles embedded in hexagonal mesoporous nanoplates as a magnetically separable, recyclable adsorbent

  • Can Zhao,
  • Yuexiao Song,
  • Tianyu Xiang,
  • Wenxiu Qu,
  • Shuo Lou,
  • Xiaohong Yin and
  • Feng Xin

Beilstein J. Nanotechnol. 2018, 9, 1770–1781, doi:10.3762/bjnano.9.168

Graphical Abstract
  • metal-organic frameworks (MOFs) with tunable cavities and tailorable chemistry have been demonstrated as precursors to generate TM-MCNs with various morphologies [16][17], it is still a significant challenge to prepare two-dimensional (2D) TM-MCNs derived from MOFs. TM-MCNs with 2D morphology are of
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

  • Landon J. Brower,
  • Lauren K. Gentry,
  • Amanda L. Napier and
  • Mary E. Anderson

Beilstein J. Nanotechnol. 2017, 8, 2307–2314, doi:10.3762/bjnano.8.230

Graphical Abstract
  • -organic frameworks (MOFs), composed of both metal ions and organic ligands, represent a class of extremely porous, crystalline materials with high surface area. Research has investigated their integration as thin films, namely surface-anchored metal-organic frameworks (surMOFs), into a wide variety of
  • integration of MOFs into a range of thin film architectures. In contrast to the successful seeding via codeposited crystals for subsequent LBL deposition, initial attempts to use surMOF films formed by LBL as seed crystallites for codeposition were unsuccessful. In this case, neither increased film
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • surface-mounted MOFs (SURMOFs). Recently, it has been shown that the growth of HKUST-1 on –COOH-terminated triptycene (Trp)-based SAMs proceeds along a different crystallographic axis than the growth on SAMs with a higher surface density of –COOH-functions, indicating that the surface density of –COOH
  • selenolate with its stronger bond to gold [7][22][23][24][25] might open an opportunity to increase the temperature range for liquid epitaxy of MOFs. The insertion of a methylene spacer group between the anchor group and aromatic moieties has been reported to improve the structural quality of, e.g
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017

Experimental techniques for the characterization of carbon nanoparticles – a brief overview

  • Wojciech Kempiński,
  • Szymon Łoś,
  • Mateusz Kempiński and
  • Damian Markowski

Beilstein J. Nanotechnol. 2014, 5, 1760–1766, doi:10.3762/bjnano.5.186

Graphical Abstract
  • to control the charge carrier transport (“tunable electrical conductivity”) was shown in porous metal-organic frameworks (MOFs) with adsorbed guest molecules [9]. It was also shown that by appropriate choice of guest molecules, it is possible to control the charge (spin) transport in the nano
PDF
Album
Review
Published 13 Oct 2014

Quasi-1D physics in metal-organic frameworks: MIL-47(V) from first principles

  • Danny E. P. Vanpoucke,
  • Jan W. Jaeken,
  • Stijn De Baerdemacker,
  • Kurt Lejaeghere and
  • Veronique Van Speybroeck

Beilstein J. Nanotechnol. 2014, 5, 1738–1748, doi:10.3762/bjnano.5.184

Graphical Abstract
  • dispersion along the the direction of the VO6 chains, similar as for other quasi-1D materials. Keywords: band structure; density functional theory (DFT); low-dimensional electronics; metal-organic frameworks (MOFs); MIL-47; Introduction Metal-organic frameworks (MOFs) present a class of materials located
  • and/or electronic ordering phenomena, are of great interest for technological applications. MOFs containing transition-metal oxides as nodes are therefore expected to show physically interesting behavior. For example Canepa et al. [36] investigated the MOF-74 frameworks with Fe, Ni and Co at their
  • metal centers, and found quasi-1D ferromagnetic behavior with quenched antiferromagnetic inter-chain interactions. Stroppa et al. [40] and Wang et al. [41] investigated Cu-based MOFs with an ABX3 perovskite architecture and found these to exhibit quasi-1D multiferroic behavior. In both cases, Jahn
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2014

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • study proposed using coordinatively unsaturated metal-organic frameworks (MOFs) as nano media to immobilize magnesium phenolate and/or Mg(TFSI)2/triglyme electrolytes (phenolates were found to be more soluble in triglyme than in tetrahydrofuran) [50]. As the phenolates were strongly interacting with the
PDF
Album
Review
Published 18 Aug 2014

Neutral and charged boron-doped fullerenes for CO2 adsorption

  • Suchitra W. de Silva,
  • Aijun Du,
  • Wijitha Senadeera and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 413–418, doi:10.3762/bjnano.5.49

Graphical Abstract
  • years metal organic frameworks (MOFs) have emerged as solid CO2 adsorbent materials due to their tuneable chemical and physical properties. Particularly, there is growing interest for metal free carbon-based nanomaterials for gas adsorption. Carbon-based nanomaterials such as fullerene, carbon nanotubes
PDF
Album
Full Research Paper
Published 07 Apr 2014

Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

  • Tatjana Ladnorg,
  • Alexander Welle,
  • Stefan Heißler,
  • Christof Wöll and
  • Hartmut Gliemann

Beilstein J. Nanotechnol. 2013, 4, 638–648, doi:10.3762/bjnano.4.71

Graphical Abstract
  • grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. Keywords: atomic force microscopy (AFM); metal-organic frameworks; nanografting; nanoshaving; SURMOF; Introduction Metal organic frameworks (MOFs) are highly crystalline three
  • -dimensional micro- and mesoporous materials that consist of metal ions or metal-oxo units (serving as nodes) interconnected by organic linkers. In conventional synthesis the MOFs are formed in a solvothermal process, and the reaction products precipitate in the form of crystalline powders [1][2]. One of the
  • best-known MOFs is HKUST-1, first introduced by Chui et al. [3]. This MOF consists of “paddle wheels” formed by attaching 1,3,5-benzenetricarboxylate linkers to a Cu2+-dimer (see Figure 1a). Meanwhile several thousands of different MOF structures are documented in the literature [4]. The high variety
PDF
Album
Full Research Paper
Published 11 Oct 2013

The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

  • Jinliang Zhuang,
  • Jasmin Friedel and
  • Andreas Terfort

Beilstein J. Nanotechnol. 2012, 3, 570–578, doi:10.3762/bjnano.3.66

Graphical Abstract
  • , dabco = 1,4-diazabicyclo[2.2.2]­octane), the fluorescence of which depends on the loading of its nanopores, was synthesized in two forms: as free-flowing nanocrystals with different shapes and as surface-attached MOFs (SURMOFs). For the latter, we used self-assembled monolayers (SAMs) bearing functional
  • -assembled monolayer; surface-attached metal–organic framework; Introduction Metal–organic frameworks (MOFs) are a fascinating class of organic–inorganic hybrid materials with nanometer-sized pores. The size and density of the pores renders these materials with extraordinary large free volumes and inner
  • surfaces, which are accessible by guest molecules. Based on this, MOFs have already demonstrated their potential for gas storage/separation [1], heterogeneous catalysis [2], molecular recognition [3], and sensing [4]. Some of these applications, such as gas storage, require the bulk preparation of the
PDF
Album
Full Research Paper
Published 02 Aug 2012

Micro- and mesoporous solids: From science to application

  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2011, 2, 774–775, doi:10.3762/bjnano.2.85

Graphical Abstract
  • , geometry and pore dimensions make these materials outstanding with respect to, e.g., catalytic reaction processes, in the area of sensorics, photonics and gas storage (Figure 1). In the realm of gas storage, mesoporous metal–organic frameworks (MOFs) appeared on the scene a couple of years ago and have
PDF
Album
Editorial
Published 30 Nov 2011

On the reticular construction concept of covalent organic frameworks

  • Binit Lukose,
  • Agnieszka Kuc,
  • Johannes Frenzel and
  • Thomas Heine

Beilstein J. Nanotechnol. 2010, 1, 60–70, doi:10.3762/bjnano.1.8

Graphical Abstract
  • preservation throughout the assembly process are the key factors that lead to the design and synthesis of reticular structures. One of the first families of materials synthesized using reticular chemistry were the so-called Metal-Organic Frameworks (MOFs) [4]. They are composed of metal-oxide connectors, which
  • are covalently bound to organic linkers. The coordination versatility of constituent metal ions along with the functional diversity of organic linker molecules has created immense possibilities. The immense potential of MOFs is facilitated by the fact that all building blocks are inexpensive chemicals
  • , and that the synthesis can be carried out solvothermally. MOFs are commercially available, and the scale up of production is continuing. Since the discovery of MOFs, many other crystalline frameworks have been synthesized using reticular chemistry, such as Metal-Organic Polyhedra (MOP) [5], Zeolite
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities