Search results

Search for "Ni(111)" in Full Text gives 19 result(s) in Beilstein Journal of Nanotechnology.

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • successfully employed hBN to investigate the pristine properties of particular molecules. Schaal et al. [86] showed that hBN on Ni(111) electronically decoupled tetraphenyldibenzoperiflanthene such that the molecular vibronic progression was observable by in situ differential reflectance spectroscopy, which is
PDF
Editorial
Published 23 Aug 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • well-controlled adsorption and electronic properties [11][12][13][14][15][16][17][18]. In such systems, h-BN shows a rich structural and electronic morphology, which depends on the lattice mismatch and the interaction strength with the substrate: Large and flat lattice-matched terraces for h-BN/Ni(111
PDF
Album
Letter
Published 17 Jun 2021

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • also indications in the literature for a significant hybridization, which results in a perturbation of the intrinsic molecular properties. In this work we study the electronic and optical properties as well as the lateral structure of tetraphenyldibenzoperiflanthene (DBP) on Ni(111) with and without an
  • the DBP molecules are well decoupled from the Ni(111) surface. Furthermore, a highly ordered DBP monolayer is obtained on h-BN/Ni(111) by depositing the molecules at a substrate temperature of 170 °C. The structural results are obtained by quantitative low-energy electron diffraction and low
  • -temperature scanning tunneling microscopy. Finally, the investigation of the valence band structure by ultraviolet photoelectron spectroscopy shows that the low work function of h-BN/Ni(111) further decreases after the DBP deposition. For this reason, the h-BN-passivated Ni(111) surface may serve as potential
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • in the conventional position facing the target. The peak at 2θ = 44.5° is dominant in the GiXRD pattern. This peak has been assigned to fcc Ni(111). The peak at 2θ = 51.8° is assigned to fcc Ni(200) and the peak at 2θ = 76.3° to fcc Ni(220) [ICDD 00-004-0850]. Surprisingly, the method of deposition
PDF
Album
Full Research Paper
Published 20 Sep 2019

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • electron. The inset shows the ARPES intensity of an N-graphene/Au/Ni(111) system at the K-point of the Brillouin zone, measured after nitrogen conversion in the ΓK direction at a temperature of 40 K. Reprinted with permission from [99], copyright 2014 American Chemical Society. N 1s core level spectra for
PDF
Album
Review
Published 18 Jul 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • , nitrogen, and air [78]. In addition, the shear strength and the interface adhesion energy for graphene on Si/SiO2 was proven to always exceed those of the graphene/Ni(111) interface [78]. The weakly lattice-mismatched graphite/hBN interface is also predicted to be promising for ultra-low-friction
PDF
Album
Review
Published 16 Jul 2018

Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

  • Nor Fazila Khairudin,
  • Mohd Farid Fahmi Sukri,
  • Mehrnoush Khavarian and
  • Abdul Rahman Mohamed

Beilstein J. Nanotechnol. 2018, 9, 1162–1183, doi:10.3762/bjnano.9.108

Graphical Abstract
  • . Yan et. al [102] studied the preparation methods of the Ni catalyst, which are the DBD plasma and thermal decomposition. It is interesting to note that plasma treatment produces more Ni (111) surface with fewer defects, which is most suitable for suppressing carbon deposition. Meanwhile, the structure
PDF
Album
Review
Published 13 Apr 2018

Electronic structure, transport, and collective effects in molecular layered systems

  • Torsten Hahn,
  • Tim Ludwig,
  • Carsten Timm and
  • Jens Kortus

Beilstein J. Nanotechnol. 2017, 8, 2094–2105, doi:10.3762/bjnano.8.209

Graphical Abstract
  • (111) and Ni(111) surfaces. We have investigated a F16CoPc/MnPc heterostructure, which exhibits ground-state charge and spin transfer. We compare the results to a CoPc/CoPc reference structure, which does not show spin and charge transfer effects in the ground state. For both organic materials, we
  • larger bias voltages. The same methodology is applied to the second model system, where the two different molecular stacks are in contact with magnetic Ni(111) leads. The quantity of interest for possible applications is the tunnel magnetoresistance (TMR), which can be obtained directly from I–V
  • Au(111) leads is predicted. For F16CoPc/MnPc heterostructure, this polarization is more robust at higher bias voltages, which qualifies this hybrid material as the better candidate for a possible spin-filter application. Devices with magnetic Ni(111) contacts yield TMR values of 4% for the pure CoPc
PDF
Album
Full Research Paper
Published 06 Oct 2017

Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

  • Yongfeng Tong,
  • Tingming Jiang,
  • Azzedine Bendounan,
  • Makri Nimbegondi Kotresh Harish,
  • Angelo Giglia,
  • Stefan Kubsky,
  • Fausto Sirotti,
  • Luca Pasquali,
  • Srinivasan Sampath and
  • Vladimir A. Esaulov

Beilstein J. Nanotechnol. 2016, 7, 263–277, doi:10.3762/bjnano.7.24

Graphical Abstract
  • interaction with Ni(111). We looked at Ni, since amongst other uses it can be employed as an electrode material. Additionally, Ni nanoparticles [93][94][95][96][97] are an example of magnetic nanoparticles [95] that are useful as catalysts [96], in magnetic fluids, as well as for binding and even magnetic
  • the Ni(111) surface selenized in the aqueous Na2Se solution and also on the annealed selenized sample. LEED measurements were performed to ascertain existence of ordered phases on the annealed surface. We will only focus on the main Se 3d results here, but results of the other XPS and LEED
  • (Supporting Information File 1, Figure S3). High-resolution XPS measurements were performed for C6DSe adsorption from a millimolar solution in ethanol for an incubation time of one hour. Figure 5b shows the Se 3d region spectra for Ni(111). The spectrum, as was observed for Pd, is rather broad and can be
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors

  • Rachel M. Thorman,
  • Ragesh Kumar T. P.,
  • D. Howard Fairbrother and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2015, 6, 1904–1926, doi:10.3762/bjnano.6.194

Graphical Abstract
  • impinging on a Ni(111) surface [6] and for 1 keV electrons impinging on a Ag(100) surface [9], along with the approximate electron energy ranges in which the principal electron induced processes are operative, i.e., dissociative electron attachment (DEA), neutral dissociation (ND), and dissociative
  • ionization (DI). While the secondary electron intensity from Ni(111) peaks at about 4 eV with a value close to 0.1 SEs/PE/eV (100 SEs per 1 keV electron) and is still approximately 0.02 SEs/PE/eV at 15 eV [6], the SE intensity from Ag(100) peaks below 1 eV and is already down to 1/10 of the peak intensity at
PDF
Album
Review
Published 16 Sep 2015

X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

  • Toma Susi,
  • Thomas Pichler and
  • Paola Ayala

Beilstein J. Nanotechnol. 2015, 6, 177–192, doi:10.3762/bjnano.6.17

Graphical Abstract
  • . Values of 284.15 [76][78] and 284.2 eV [69][70] have been measured on Ir(111) and Au-intercalated Ni(111) surfaces, respectively. C 1s values for graphene on other metal surfaces range from as low as 283.97 eV on Pt(111) [76][77], to 284.5 eV on Cu(111) [72], and 284.7 eV on Ni(111) [68]. The range of
PDF
Album
Review
Published 15 Jan 2015

Spectroscopic mapping and selective electronic tuning of molecular orbitals in phosphorescent organometallic complexes – a new strategy for OLED materials

  • Pascal R. Ewen,
  • Jan Sanning,
  • Tobias Koch,
  • Nikos L. Doltsinis,
  • Cristian A. Strassert and
  • Daniel Wegner

Beilstein J. Nanotechnol. 2014, 5, 2248–2258, doi:10.3762/bjnano.5.234

Graphical Abstract
  • feature. We note that it is not entirely uncommon that a spectroscopic feature might be hard to see or even entirely obscured in point spectroscopy but can be observed in dI/dV maps. This has, for instance, been found for surface states on W(110) [44] and Ni(111) [45]. Also tetracyanoethylene molecules on
PDF
Album
Full Research Paper
Published 26 Nov 2014

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • of 0.42 ± 0.03 eV obtained on graphene/Ir(100) [50]. Our results are in fair agreement with μ-ARPES data for the graphene/Au/Ni(111) system [64]. On the Ni substrate, the Au intercalation leads to a non-rigid shift of the bands of graphene towards lower binding energies, the π-band moving by
PDF
Album
Review
Published 27 Oct 2014

Volcano plots in hydrogen electrocatalysis – uses and abuses

  • Paola Quaino,
  • Fernanda Juarez,
  • Elizabeth Santos and
  • Wolfgang Schmickler

Beilstein J. Nanotechnol. 2014, 5, 846–854, doi:10.3762/bjnano.5.96

Graphical Abstract
  • . Nickel and cobalt are the only metals that lie on the descending branch, and they are worth a special look. Nickel Nickel and cobalt are very similar, and we focus on Ni(111), which is the densest and most stable surface. Nickel is one of the few metals that are spin polarized, and the d bands for spin
  • about 2.4 Å [10][27]. In contrast, on Ni(111) spin polarization persists to much shorter distances. As an example, we show the densities of states (DOS) at a distance of 1.6 Å. For the two spin states of H1s, the DOS have almost the same shape but are shifted with respect to each other. Each spin
  • (except cobalt) can escape by passing through intermediates with a higher energy. We have calculated the free energy surface for hydrogen adsorption (Volmer reaction) on Ni(111) from our own theory. The calculations follow exactly our previous works [10][25], to which we refer for the details. In Figure 5
PDF
Album
Full Research Paper
Published 13 Jun 2014

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • investigated with HRTEM are found consistent with Cu and Ni fcc phases with a slight systematic shift towards higher values, when compared to bulk plane separations (inset lower left for Cu(111) and Ni(111)). Quantitative EDX mapping revealing the underlying CS-structure: a) HAADF-STEM micrograph, b) Cu (blue
PDF
Album
Full Research Paper
Published 14 Apr 2014

Interaction of iron phthalocyanine with the graphene/Ni(111) system

  • Lorenzo Massimi,
  • Simone Lisi,
  • Daniela Pacilè,
  • Carlo Mariani and
  • Maria Grazia Betti

Beilstein J. Nanotechnol. 2014, 5, 308–312, doi:10.3762/bjnano.5.34

Graphical Abstract
  • photo electron spectroscopy (ARPES) is used to determine the interaction states of iron phthalocyanine molecules that are adsorbed onto graphene on Ni(111). The iron phthalocyanine deposition induces a quenching of the Ni d surface minority band and the appearance of an interface state on graphene/Ni
  • to form ordered networks of metal atoms trapped in an organic cage, which is a suitable configuration for the realization of spin-based qubits [10]. Interesting and exemplary cases are represented by MPcs adsorbed on graphene grown on Ni(111) and Ir(111) surfaces. In fact, graphene on Ni(111) and on
  • ]. Recently it has been shown that graphene acts as a buffer layer that decouples the FePc molecules from Ir(111) and prevents an Ir–FePc interaction [13]. On the other hand, for Gr/Ni(111) a FePc–Ni interaction has been suggested [14][15][16] despite the presence of the graphene sheet, as it was already
PDF
Album
Full Research Paper
Published 17 Mar 2014

Core level binding energies of functionalized and defective graphene

  • Toma Susi,
  • Markus Kaukonen,
  • Paula Havu,
  • Mathias P. Ljungberg,
  • Paola Ayala and
  • Esko I. Kauppinen

Beilstein J. Nanotechnol. 2014, 5, 121–132, doi:10.3762/bjnano.5.12

Graphical Abstract
  • ]. Other authors have measured the C 1s at 284.15 eV [27] on Ir(111) and 284.2 eV on Au-intercalated Ni(111) [28], but again, charge transfer very likely contributes to the results. Since no conclusive XPS data on freestanding monolayered graphene is available so far, we have chosen to use 284.4 eV as the
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2014

Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM

  • Benedikt Uhl,
  • Florian Buchner,
  • Dorothea Alwast,
  • Nadja Wagner and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 903–918, doi:10.3762/bjnano.4.102

Graphical Abstract
  • , an adsorption geometry with the cations lying flat in direct contact with the surface and the anions placed on top of the cations was proposed based on ARXPS measurements [17]. For [MMIM][TFSA] adsorption on Ni(111) [20], a similar adsorption geometry was proposed for adlayers in the submonolayer
PDF
Album
Full Research Paper
Published 16 Dec 2013

Structure, morphology, and magnetic properties of Fe nanoparticles deposited onto single-crystalline surfaces

  • Armin Kleibert,
  • Wolfgang Rosellen,
  • Mathias Getzlaff and
  • Joachim Bansmann

Beilstein J. Nanotechnol. 2011, 2, 47–56, doi:10.3762/bjnano.2.6

Graphical Abstract
  • properties of supported clusters or nanoparticles. Results: In this contribution we focus on mass-filtered Fe nanoparticles in a size range from 4 nm to 10 nm that are generated in a cluster source and subsequently deposited onto two single crystalline substrates: fcc Ni(111)/W(110) and bcc W(110). We use a
  • particular XMCD reveals that Fe particles on Ni(111)/W(110) have a significantly lower (higher) magnetic spin (orbital) moment compared to bulk iron. The reduced spin moments are attributed to the random particle orientation being confirmed by RHEED together with a competition of magnetic exchange energy at
  • process might be accompanied by a complex reshaping of the particles. Keywords: epitaxy; iron; magnetic nanoparticles; Ni(111); RHEED; spontaneous self-alignment; STM; W(110); XMCD; Introduction Ferromagnetic clusters and nanoparticles have gained huge interest due to their interesting fundamental
PDF
Album
Full Research Paper
Published 21 Jan 2011
Other Beilstein-Institut Open Science Activities