Search results

Search for "STXM" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

High-throughput synthesis of modified Fresnel zone plate arrays via ion beam lithography

  • Kahraman Keskinbora,
  • Umut Tunca Sanli,
  • Margarita Baluktsian,
  • Corinne Grévent,
  • Markus Weigand and
  • Gisela Schütz

Beilstein J. Nanotechnol. 2018, 9, 2049–2056, doi:10.3762/bjnano.9.194

Graphical Abstract
  • single-pass, single-pixel exposure (SPSP-E) writing strategy will be discussed. Then, an application of rapid realization of a high-resolution FZP with 30 nm outermost zone width and its imaging performance in a scanning transmission X-ray microscope (STXM) will be presented. Finally, the method is
  • realization demonstrates the capabilities of modern focused ion beam instrumentation for direct-write lithography. Soft X-ray microscopy tests using the FZP The imaging resolution and the DE of the FZP were tested using a scanning transmission X-ray microscope (STXM) [43] as described earlier [28]. The
  • microscope images were taken using the STEM mode of the Nanolab600. Scanning transmission X-ray microscopy experiments FZPs were mounted as the focusing optic in a state-of-the-art STXM, MAXYMUS [43], located at UE46-PGM-2 beamline of BESSY II facility in Berlin, as described before [28]. An energy range
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2018

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • (MFM), and scanning transmission X-ray microscopy (STXM) deliver magnetic maps even down to a single antidot unit cell. One example of the prepared antidot lattices is displayed in Figure 2. The scanning electron microscopy (SEM) image shows a Fe antidot array with a = 200 nm, d = 125 nm and thickness
  • t = 20 nm formed on a 500 nm thick Si3N4 membrane used for STXM. The brighter contrast on the left in Figure 2 arises from the supporting Si frame of the 0.5 × 0.5 mm2 membrane area. Principally, the removal of PS spheres opens the door for oxidation and thus magnetic modification of the antidot
  • nanostructures. Hence, it is necessary to use complex and sophisticated synchrotron methods like STXM and photoemission electron microscopy (PEEM) or magnetic force microscopy. One possible way, however, gaining further microscopic understanding of interaction phenomena and coercive field distributions in
PDF
Album
Full Research Paper
Published 24 May 2016

Overview of nanoscale NEXAFS performed with soft X-ray microscopes

  • Peter Guttmann and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2015, 6, 595–604, doi:10.3762/bjnano.6.61

Graphical Abstract
  • be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to
  • study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS
  • spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples. Keywords: NEXAFS; STXM; TXM; X-ray microscopy; Review Introduction Several analysis tools and
PDF
Album
Review
Published 27 Feb 2015

Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques

  • Anja Ostrowski,
  • Daniel Nordmeyer,
  • Alexander Boreham,
  • Cornelia Holzhausen,
  • Lars Mundhenk,
  • Christina Graf,
  • Martina C. Meinke,
  • Annika Vogt,
  • Sabrina Hadam,
  • Jürgen Lademann,
  • Eckart Rühl,
  • Ulrike Alexiev and
  • Achim D. Gruber

Beilstein J. Nanotechnol. 2015, 6, 263–280, doi:10.3762/bjnano.6.25

Graphical Abstract
  • focused on a sample in scanning transmission X-ray microscopy (STXM) [147][148][149]. The sample is then raster-scanned while the intensity of the transmitted X-rays is recorded, thus, a 2D image is obtained. STXM has been used, for example, for studying cells in vitro [144][150]. We used STXM for a
  • penetration study on gold core particles with silica shells with two sizes as well as silica particles with a gold shell in excised human skin (Figure 7) [151]. Following topical particle application, ultramicrotome sections of these samples were analyzed with light microscopy and STXM (Figure 7). High
  • resolution STXM image analysis revealed single particles within the superficial layer of the stratum corneum [151]. A combination of STXM with X-ray fluorescence (XRF) microprobe has been used to study the fate of zinc oxide nanoparticles in vitro. Thereby, microfocused XRF elemental mapping yielded the
PDF
Album
Review
Published 23 Jan 2015

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • scanning transmission X-ray microscopy (STXM) studies on human skin, which allowed us to visualize silica-shell/gold-core particles in the size range of 94–298 nm on superficial layers of the stratum corneum and in hair follicle openings at the single particle level (Figure 1c, see [4] for further details
  • and sectioning poses technical challenges, especially when ultrathin sections must be prepared for analysis with high resolution techniques, such as STXM or electron microscopy. Preparation of single-cell suspensions from tissue samples pretreated with nanoparticles overcomes challenges associated
  • (Figure 1c) were performed on the PolLux scanning transmission STXM microscope at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland. The protocols for particle detection on human skin were newly developed and published in detail in our publication [4]. A detailed description of the
PDF
Album
Full Research Paper
Published 08 Dec 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • sensitivity to provide an accurate local elemental analysis. The requirements mentioned are fulfilled, however, by scanning transmission X-ray microscopy (STXM) [72][73][74]. In this technique, high-brilliance, tunable synchrotron radiation in the soft X-ray regime is tightly focused, and the specimen is
  • permits to probe a sample without the necessity to stain the local chemical environment of the absorbing site. The spectral resolution of STXM is about three orders of magnitude higher than that of EDX. Hence, chemical information of the sample with high spatial resolution is obtained. In addition, even
  • thick (up to 10 µm) and wet samples can be studied. In spite of these advantages, the number of available setups is limited, so that STXM has only been applied to a small number of biological or biomedical samples in the past, including the investigation of local morphological changes in cells [75]. We
PDF
Album
Review
Published 03 Nov 2014

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

  • Florian Vollnhals,
  • Martin Drost,
  • Fan Tu,
  • Esther Carrasco,
  • Andreas Späth,
  • Rainer H. Fink,
  • Hans-Peter Steinrück and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2014, 5, 1175–1185, doi:10.3762/bjnano.5.129

Graphical Abstract
  • nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are studied by scanning electron microscopy (SEM) and scanning transmission X-ray microscopy (STXM), including near edge X-ray absorption fine structure (NEXAFS
  • resulting deposits are characterized by SEM and scanning transmission X-ray microscopy (STXM). STXM allows for the non-destructive quantitative spectromicroscopic characterization of the individual layers with nanoscale resolution and high contrast due to the possibility of resonant imaging [26]. The EBID
  • brightness of the deposits and the cluster growth mode are in line with the autocatalytic growth of EBID deposits upon dosage of additional Co(CO)3NO. The samples were further characterized at the PolLux soft X-ray STXM beamline [28] at the Swiss Light Source using a zone plate with a nominal resolution of
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2014

Characterization of electroforming-free titanium dioxide memristors

  • John Paul Strachan,
  • J. Joshua Yang,
  • L. A. Montoro,
  • C. A. Ospina,
  • A. J. Ramirez,
  • A. L. D. Kilcoyne,
  • Gilberto Medeiros-Ribeiro and
  • R. Stanley Williams

Beilstein J. Nanotechnol. 2013, 4, 467–473, doi:10.3762/bjnano.4.55

Graphical Abstract
  • performed using scanning transmission X-ray microscopy (STXM) at the Advanced Light Source in the Lawrence Berkeley National Laboratory. STXM allows spatially-resolved X-ray absorption spectroscopy (XAS) to be performed on a sample and is well-suited for chemical and structural characterization of the thin
  • memristor devices, STXM measurements were made. Figure 2 compares post-switching X-ray absorption images of a normal electroformed device and a forming-free bilayer device. All images were taken at X-ray energies within the Ti L2,3 absorption edge (455–475 eV) which is sensitive to chemical and structural
  • significant material changes within the device. The forming-free bilayer device, on the other hand, showed no spatial contrast anywhere within or near the device junction. In total, three forming-free devices were studied in STXM after resistance switching and no spatial features indicating material changes
PDF
Album
Full Research Paper
Published 07 Aug 2013

Tuning the properties of magnetic thin films by interaction with periodic nanostructures

  • Ulf Wiedwald,
  • Felix Haering,
  • Stefan Nau,
  • Carsten Schulze,
  • Herbert Schletter,
  • Denys Makarov,
  • Alfred Plettl,
  • Karsten Kuepper,
  • Manfred Albrecht,
  • Johannes Boneberg and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2012, 3, 831–842, doi:10.3762/bjnano.3.93

Graphical Abstract
  • the highest coercive field for this set of parameters in the interval between 60 and 100 nm. This finding can be compared to the experimentally determined, unperturbed Fe domain wall width as measured by scanning transmission X-ray microscopy (STXM). For a deeper understanding of the micromagnetism
  • , selected samples were investigated by STXM at the PolLux beamline at the Swiss Light Source, Paul-Scherrer-Institute in Villigen, Switzerland. The setup has been presented in detail elsewhere [30]. Percolated Fe films were prepared on commercial Si3N4 membranes (thickness 100 nm) in-line with the
  • detail for a percolated Fe film with nominally a = 95 nm, d = 35 nm, t = 18 nm. The parameters were chosen in such a way that the maximum field available in the setup (300 Oe) was sufficient to switch the magnetization of the sample. Figure 6a presents a single STXM image taken with right circularly
PDF
Album
Full Research Paper
Published 07 Dec 2012
Other Beilstein-Institut Open Science Activities