Search results

Search for "ZnO nanostructures" in Full Text gives 35 result(s) in Beilstein Journal of Nanotechnology.

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • ) have been investigated. Increase in citrate concentration has been found to result in the formation of nanodisk-like structures, due to citrate-assisted oriented attachment of ZnO nanoparticles. The decoration of ZnO nanostructures with Ag nanoparticles resulted in a significant enhancement of the
  • including UV lasers [1], field effect transistors [2], dye sensitized solar cells [3][4], surface enhanced Raman spectroscopy (SERS) [5] and biomedical applications [6][7][8][9][10]. ZnO nanostructures are promising photocatalysts because of their high quantum efficiency, high redox potential, superior
  • physical and chemical stability, non-toxicity and low cost [11][12][13][14][15][16]. However, ZnO nanostructures suffer from drawbacks such as a high electron–hole recombination rate and the inefficient utilization of sun light, which limit their photocatalytic activity [17][18]. Several attempts have been
PDF
Album
Full Research Paper
Published 15 May 2014

Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Neha Bhardwaj,
  • Jaspal Singh,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2013, 4, 763–770, doi:10.3762/bjnano.4.87

Graphical Abstract
  • Flower-like ZnO nanostructures were synthesized by a facile wet chemical method. Structural, optical and photocatalytic properties of these nanostructures have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) and
  • ) as compared to ZnO nanoparticles. XRD, UV–vis absorption, PL, FTIR and TEM studies revealed the formation of Zn(OH)2 surface layer on ZnO nanostructures upon ageing. We demonstrate that the formation of a passivating Zn(OH)2 surface layer on the ZnO nanostructures upon ageing deteriorates their
  • environmental pollutants. ZnO nanostructures with different morphologies have been synthesized by wet chemical methods [9][10][11][12][13] and used for various applications such as photocatalytic degradation of organic dyes [14][15][16][17][18][19][20][21][22][23][24], dye sensitized solar cells [25][26][27][28
PDF
Album
Full Research Paper
Published 18 Nov 2013

Modulation of defect-mediated energy transfer from ZnO nanoparticles for the photocatalytic degradation of bilirubin

  • Tanujjal Bora,
  • Karthik K. Lakshman,
  • Soumik Sarkar,
  • Abhinandan Makhal,
  • Samim Sardar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2013, 4, 714–725, doi:10.3762/bjnano.4.81

Graphical Abstract
  • . Furthermore, the defect-mediated emission of energy from the ZnO nanostructures can also effectively degrade various organic compounds in water through Förster resonance energy transfer (FRET) [15]. Hence, for an efficient photocatalysis system that is based on ZnO nanostructures, the control of such defect
  • sites is a crucial factor. One effective way to modulate the concentration of defects in the ZnO lattice is to anneal the ZnO nanostructures in an oxygen-rich atmosphere. The effect of annealing on the native defects of ZnO has been studied extensively and it has been demonstrated that the crystallinity
  • molecules on ZnO nanostructures, a resonant defect-mediated energy transfer from the photo-excited ZnO nanostructures to the BR molecules induces their photodegradation [15]. It was also demonstrated that the system can effectively degrade BR when it is bound to albumin. Although literature related to the
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2013

Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition

  • Adib Abou Chaaya,
  • Roman Viter,
  • Mikhael Bechelany,
  • Zanda Alute,
  • Donats Erts,
  • Anastasiya Zalesskaya,
  • Kristaps Kovalevskis,
  • Vincent Rouessac,
  • Valentyn Smyntyna and
  • Philippe Miele

Beilstein J. Nanotechnol. 2013, 4, 690–698, doi:10.3762/bjnano.4.78

Graphical Abstract
  • temperature caused by quantum confinement [11] and, an improvement of the photovoltaic and sensor performance due to a high surface area [12][13]. ZnO nanostructures are obtained as nanoparticles [14], nanotubes [15], nanowires [5][7], and ultrathin films [16][17]. Ultrathin ZnO films can be synthesized by
  • ]. Crystallinity and stochiometry of the film determine the concentration of point defects (zinc and oxygen vacancies, interstitial zinc and oxygen) [20]. The band gap of ZnO nanostructures decreases from 3.29 to 3.23 eV with an increase of the grain size [21]. The electrical conductivity of ZnO is affected by a
  • increasing intensity of the excitonic PL. Liao et al. [48] and Wang et al. [18] report that the decrease of the depletion layer in ZnO nanostructures are capable to stimulate transitions between neutral, single-charged, and doubly ionized oxygen vacancies assisted by a UV shift of the visible emission. The
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2013

Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

  • Igor Beinik,
  • Markus Kratzer,
  • Astrid Wachauer,
  • Lin Wang,
  • Yuri P. Piryatinski,
  • Gerhard Brauer,
  • Xin Yi Chen,
  • Yuk Fan Hsu,
  • Aleksandra B. Djurišić and
  • Christian Teichert

Beilstein J. Nanotechnol. 2013, 4, 208–217, doi:10.3762/bjnano.4.21

Graphical Abstract
  • Dresden-Rossendorf, Institut für Strahlenphysik, Dresden, Germany Department of Physics, University of Hong Kong, P.R. China 10.3762/bjnano.4.21 Abstract Background: ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical
  • experiments carried out at variable oxygen pressure. Keywords: AFM; nanorods; photoconductive AFM; photoconductivity; ZnO; Introduction One-dimensional ZnO nanostructures, so called ZnO nanorods (NRs), exhibit technological potential for many device applications. Having a wide band gap (3.37 eV at room
PDF
Album
Full Research Paper
Published 21 Mar 2013

Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

  • Cheng Huang,
  • Markus Moosmann,
  • Jiehong Jin,
  • Tobias Heiler,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 620–628, doi:10.3762/bjnano.3.71

Graphical Abstract
  • growth of ZnO nanostructures [1]. Keywords: breath figure; nanopatterned template; polymer blend lithography (PBL); self-assembled monolayer (SAM); self assembly; spin coating; vapor phase; Introduction Self-assembled monolayers (SAMs) are well-known and have been intensively studied for many years
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012

Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

  • Jinzhang Liu,
  • Nunzio Motta and
  • Soonil Lee

Beilstein J. Nanotechnol. 2012, 3, 353–359, doi:10.3762/bjnano.3.41

Graphical Abstract
  • , including light-emitting diodes, laser diodes, and photodetectors for the ultraviolet (UV) spectral range [1][2]. ZnO nanostructures are particularly interesting as they bear superior properties compared to the bulk crystal. UV-light detection is one of the major applications of ZnO, and various UV
PDF
Album
Letter
Published 02 May 2012

Low-temperature solution growth of ZnO nanotube arrays

  • Ki-Woong Chae,
  • Qifeng Zhang,
  • Jeong Seog Kim,
  • Yoon-Ha Jeong and
  • Guozhong Cao

Beilstein J. Nanotechnol. 2010, 1, 128–134, doi:10.3762/bjnano.1.15

Graphical Abstract
  • the pH value of the reaction solution played an important role in mediating the growth of ZnO nanostructures. A change in the growth temperature might change the pH value of the solution and bring about the structure conversion of ZnO from nanorods to nanotubes. It was proposed that the ZnO nanorods
  • nanotubes, i.e., the solution was first kept at 90 °C for 3 h and then cooled down to a given temperature for 20 h. pH values of the reaction solution were measured every hour. The morphology of ZnO nanostructures was characterized with a scanning electron microscope (JEOL JSM7000F, Japan). SEM image of a
PDF
Album
Full Research Paper
Published 09 Dec 2010

Aerosol assisted fabrication of two dimensional ZnO island arrays and honeycomb patterns with identical lattice structures

  • Mitsuhiro Numata and
  • Yoshihiro Koide

Beilstein J. Nanotechnol. 2010, 1, 71–74, doi:10.3762/bjnano.1.9

Graphical Abstract
  • at room temperature. A large-scale, high throughput, size-controlled assembly of ZnO nanostructures would allow the fabrication of a number of conceivable optoelectronic devices, such as dye sensitized solar cells [1][2], electronic sensors [3], UV lasers [4][5], photocatalysts [6], and two
PDF
Album
Letter
Published 22 Nov 2010

Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods

  • Sunandan Baruah,
  • Mohammad Abbas Mahmood,
  • Myo Tay Zar Myint,
  • Tanujjal Bora and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2010, 1, 14–20, doi:10.3762/bjnano.1.3

Graphical Abstract
  • deficient structures using a fast crystallization process achieved by microwave assisted hydrolysis. This enhancement in the photocatalytic activity was correlated to an increased absorption efficiency of light in the UV and visible regions. Intentional defect inclusion in the crystal of ZnO nanostructures
  • . Growth of ZnO Nanorods The ZnO nanorods were grown hydrothermally on glass substrates, which were initially thiolated for better attachment of the ZnO nanoparticle seeds [31]. Hydrothermal growth of ZnO nanostructures is a simple and thermally efficient process [27]. Seeding was done by dip coating with
PDF
Album
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities