Search results

Search for "bionanocomposites" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • microorganisms, that is, cyanobacteria and yeast cells, have been immobilized in silica and silicate-based substrates organized as nanostructured materials. In a first attempt, matrices based on bionanocomposites of chitosan and alginate incorporating sepiolite clay mineral and shaped as films, beads, or foams
  • bionanocomposites that display biomimetic and bioinspired characteristics, derived from their biological components (e.g., polysaccharides, proteins, nucleic acids, enzymes and viruses, etc.) and the inorganic network (e.g., silica and silicates, clay minerals and phosphates) [5][6][7][8]. More complex biohybrid
  • nanoarchitectures towards more complex biohybrid materials, such as for the entrapping of microorganisms investigated here. In this context, previous exploratory works in our laboratory showed interesting results regarding the use of sepiolite-based bionanocomposites as alternative to silica-based materials for the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • different properties will determine a functional set of predetermined utility with SEP maintaining stable colloidal dispersions of different nanoparticles and polymers in water. Keywords: bionanocomposites; carbon nanostructures; electrochemical devices; halloysite nanotubes; sepiolite; Introduction In
  • ][26]. In fact, following this approach it was possible to prepare multifunctional and homogeneous nanocomposite materials such as self-supported sepiolite–nanocarbon hybrid buckypapers [25] and conducting bionanocomposites [26]. Therefore, the present study explores the potential of sepiolite for
  • the SEM images given their small size and low concentration (2–5%) in the bionanocomposites. Freeze-casting rendered foams of high uniformity and shape fidelity (Figure 3C). The foams display open, cell-like pores (Figure 3E,G) with a pore diameter of 13 ± 4 μm and a cell wall thickness of 0.2–0.4 μm
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces

  • Ana C. S. Alcântara,
  • Margarita Darder,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1772–1782, doi:10.3762/bjnano.7.170

Graphical Abstract
  • ; biointerfaces; bionanocomposites; montmorillonite; zein; Introduction Organic–inorganic hybrids are composed of organic and inorganic units that interact at the molecular scale, and the characteristics of these subunits determine a broad range of properties of the hybrid relevant for many applications [1
  • prepared by intercalation of biomolecules such as lipids or proteins have been recently reported [23][24][25][26], resulting in so-called bio-organoclays useful as fillers in the preparation of bionanocomposites or as biointerfaces for adsorption of biological species. In the present case, the
  • changes in the amide-I band of zein were reported by Ozcalik and Tihminlioglu [37] in bionanocomposites based on organomodified montmorillonite. The band ascribed to the νNH vibration mode of the amide-A groups in zein also appears at higher wavenumber in the biohybrids, where the frequency depends on the
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2016

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • , and also decreased the mobility in the bilayers. The bio-coating of CNTs with bio-inspired membranes may be an effective method of increasing the biocompatibility of the CNTs, giving rise to bionanocomposites with good physical stability, having both antioxidant and antimicrobial properties. Schematic
PDF
Album
Full Research Paper
Published 02 Dec 2014

Mechanical and thermal properties of bacterial-cellulose-fibre-reinforced Mater-Bi® bionanocomposite

  • Hamonangan Nainggolan,
  • Saharman Gea,
  • Emiliano Bilotti,
  • Ton Peijs and
  • Sabar D. Hutagalung

Beilstein J. Nanotechnol. 2013, 4, 325–329, doi:10.3762/bjnano.4.37

Graphical Abstract
  • of bionanocomposites of Mater-Bi reinforced by the fibre of bacterial cellulose (FBC), which is the main goal of this work. It is expected that the composite of BC and Mater-Bi will produce better mechanical properties and higher thermal stability. Therefore, composites base on Mater-Bi NF01U, a
  • product from Novamont, with BC were prepared and their mechanical, thermal and morphological properties tested. Results and Discussion The mechanical properties of Mater-Bi as well as bionanocomposites of Mater-Bi/FBC, including the Young’s modulus, tensile strength, and elongation at break are shown in
  • contributes to the composite toughness. The addition of FBC into Mater-Bi containing PEVOH as plasticizer for the preparation of Mater-Bi/FBC bionanocomposites showed morphological changes on the surface, as shown in Figure 2. It can be seen that FBC is easily incorporated in the Mater-Bi matrix and gives a
PDF
Album
Full Research Paper
Published 23 May 2013
Other Beilstein-Institut Open Science Activities