Search results

Search for "biosensing" in Full Text gives 86 result(s) in Beilstein Journal of Nanotechnology.

Mechanical properties of sol–gel derived SiO2 nanotubes

  • Boris Polyakov,
  • Mikk Antsov,
  • Sergei Vlassov,
  • Leonid M Dorogin,
  • Mikk Vahtrus,
  • Roberts Zabels,
  • Sven Lange and
  • Rünno Lõhmus

Beilstein J. Nanotechnol. 2014, 5, 1808–1814, doi:10.3762/bjnano.5.191

Graphical Abstract
  • environmentally sensitive materials [4][5], biological and biosensing applications [6][7][8], waveguide optics and photonics [9][10][11][12]. However, only a few publications were dedicated to the investigation of the mechanical properties of one-dimensional silica nanostructures, and even less to the ones
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2014

Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

  • Dagmar A. Kuhn,
  • Dimitri Vanhecke,
  • Benjamin Michen,
  • Fabian Blank,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1625–1636, doi:10.3762/bjnano.5.174

Graphical Abstract
  • delivery [1][2][3][4][5][6], biosensing [7] and bio-medical imaging [8]. In order to develop optimal NPs for biomedical use, much attention is given to the understanding of the basic mechanism of NP interactions with cellular systems at the single cellular level [9][10][11]. It has already been shown that
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • impact of NPs that merits discussion. There is a big difference between the use of NPs for cellular labeling or biosensing studies in research, as opposed to any therapeutic (in vivo) utility, and the two should never be thought of together or directly compared. It was, for example, recently shown that
PDF
Album
Review
Published 09 Sep 2014

Nanocavity crossbar arrays for parallel electrochemical sensing on a chip

  • Enno Kätelhön,
  • Dirk Mayer,
  • Marko Banzet,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2014, 5, 1137–1143, doi:10.3762/bjnano.5.124

Graphical Abstract
  • sensors that are highly desirable for applications such as on-chip parallel biosensing or the detection of chemical communication in a neuronal network. This can be achieved via the organization of feed lines in a perpendicular arrangement. Individual sensors are then located at each of the feed line
PDF
Album
Full Research Paper
Published 23 Jul 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • ]. Furthermore, it is well reported that AuNRs are often used for surface enhanced Raman spectroscopy (SERS) biosensing applications. This is based on the observation that a gold rod-like particle has a higher electric field at both ends of the rod [10][11] where it is particularly useful for enhancing the
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels

  • Nikita Arnold,
  • Boyang Ding,
  • Calin Hrelescu and
  • Thomas A. Klar

Beilstein J. Nanotechnol. 2013, 4, 974–987, doi:10.3762/bjnano.4.110

Graphical Abstract
  • used for important applications such as biosensing [18], plasmon-enhanced solar cells [19][20], or as substrates for surface-enhanced Raman scattering [21][22] and coherent anti-Stokes Raman scattering [23]. A severe problem for all plasmonic applications is the damping of plasmons due to Ohmic losses
PDF
Album
Full Research Paper
Published 30 Dec 2013

Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2013, 4, 345–351, doi:10.3762/bjnano.4.40

Graphical Abstract
  • photocatalytic efficiency [8][9]. However, silver nanoparticles have prospective applications including biosensing, biodiagnostics, optical fibers, and antimicrobial and photocatalytic uses. Silver ions are known to cause denaturation of proteins present in bacterial cell walls and slow down bacterial growth [5
PDF
Album
Correction
Full Research Paper
Published 06 Jun 2013

FTIR nanobiosensors for Escherichia coli detection

  • Stefania Mura,
  • Gianfranco Greppi,
  • Maria Laura Marongiu,
  • Pier Paolo Roggero,
  • Sandeep P. Ravindranath,
  • Lisa J. Mauer,
  • Nicoletta Schibeci,
  • Francesco Perria,
  • Massimo Piccinini,
  • Plinio Innocenzi and
  • Joseph Irudayaraj

Beilstein J. Nanotechnol. 2012, 3, 485–492, doi:10.3762/bjnano.3.55

Graphical Abstract
  • traditional devices into biosensing systems with high sensitivity. In particular, mesoporous titania thin films synthesized with the sol–gel method, were used to immobilize biomolecules (antibodies and pathogens) thanks to the high surface area due to their nano-organization, visible in a AFM image (Figure 1
PDF
Album
Full Research Paper
Published 03 Jul 2012

Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

  • Jaydeep Bhattacharya,
  • Alexandre Kisner,
  • Andreas Offenhäusser and
  • Bernhard Wolfrum

Beilstein J. Nanotechnol. 2011, 2, 104–109, doi:10.3762/bjnano.2.12

Graphical Abstract
  • as template structures in nanofabrication technology [9][10][11][12][13][14][15][16][17][18][19][20] to their direct use as functional interfaces for controlled release of molecules [21][22][23], co-culture development [24], or biosensing [25]. For example, Steinem et al. have demonstrated the
PDF
Album
Full Research Paper
Published 11 Feb 2011

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • medicine. In general, biological samples have only negligible magnetic susceptibility. Thus, using magnetic nanoparticles for biosensing not only enhances sensitivity but also effectively reduces sample preparation needs. This review focuses on the use of magnetic nanoparticles for in vitro detection of
  • molecular measurements into clinical settings, however, an assay would need to 1) provide high sensitivity and specificity, 2) minimize sample preparation and sample volume, and 3) ideally allow concurrent detection of diverse target moieties through multiplexed measurements. Biosensing strategies based on
  • their longitudinal relaxivities (r1), T2 is used for NMR-based biosensing applications. With a higher r2 relaxivity, fewer numbers of nanoparticles are required to produce detectable T2 changes. Within an ensemble of MNPs, magnetic relaxation properties depend on more than simply the particles
PDF
Album
Review
Published 16 Dec 2010

Electrochemical behavior of dye-linked L-proline dehydrogenase on glassy carbon electrodes modified by multi-walled carbon nanotubes

  • Haitao Zheng,
  • Leyi Lin,
  • Yosuke Okezaki,
  • Ryushi Kawakami,
  • Haruhiko Sakuraba,
  • Toshihisa Ohshima,
  • Keiichi Takagi and
  • Shin-ichiro Suye

Beilstein J. Nanotechnol. 2010, 1, 135–141, doi:10.3762/bjnano.1.16

Graphical Abstract
  • require considerable time for analysis. In recent years, researchers have paid much more attention to the construction of electrochemical enzyme biosensors for the analysis of amino acids [5][6][7], and several electrochemical biosensing systems for L-proline and D-proline determination have been reported
PDF
Album
Full Research Paper
Published 14 Dec 2010
Other Beilstein-Institut Open Science Activities