Search results

Search for "cancer" in Full Text gives 248 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • also includes cancer imaging and diagnosis such as the MRI imaging agent Resovist, carboxydextran-coated superparamagnetic iron oxide nanoparticles approved for liver contrast-enhanced MRI102 [87]. Another 10% are nanocrystals, such as Tricor (approved in 2004) or Triglide (approved in 2005), used to
PDF
Album
Review
Published 27 Mar 2024
Graphical Abstract
  • treatment of cancer cells. To achieve this, QSPR modeling was first performed with 18 metal oxide (MeOx) NMs to measure their materials properties using periodic table-based descriptors. The features obtained were later applied for zeta potential calculation (imputation for sparse data) for MeOx NMs that
  • oxidative damage through free radical accumulation, which could lead to changes in the survival rate of cancerous cells. The developed QSPR and quantitative structure–activity relationship models also give hints regarding safer design and toxicity assessment of MeOx NMs. Keywords: cancer cell treatment
  • = 0.54) showing the stability and predictive ability of the model. Utilization of the metal oxide cell damage knowledge for cancer treatment NPs have shown immense potential in treating various diseases owing to their small size and high surface-to-volume ratio, which makes them effective drug delivery
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • cancer therapy agent, is included in the nanocomposite structure, and in vitro drug release studies under different pH conditions (pH 5.5 and 7.4) and photothermal activity at 808 nm NIR laser irradiation are investigated. The comprehensive integration of precise multifunctional nanoparticles design
  • , magnetic response, and controlled drug release with photothermal effect brings a different perspective to advanced cancer treatment research. Keywords: drug efficacy; iron oxide nanoparticles; photothermal; solvothermal method; Introduction Cancer is a widespread condition characterized by the
  • uncontrolled proliferation of aberrant cells, which can spread to diverse body regions, encompassing over a hundred distinct forms [1][2]. Current cancer treatments lack a complete approach, as they mostly rely on radiotherapy, chemotherapy, immunotherapy, and surgery in clinical environments [3]. While these
PDF
Album
Full Research Paper
Published 28 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • used in tandem with ion beam therapies against cancer. Another unique application is in long-term data storage [4][5], and ion beams can be used to test the stability of such DNA-origami-based storage under irradiation from natural sources such as cosmic rays or radioisotope decay [6]. More important
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Nanocarrier systems loaded with IR780, iron oxide nanoparticles and chlorambucil for cancer theragnostics

  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan-Thang Cao,
  • Vy Tran-Anh and
  • Hieu Vu Quang

Beilstein J. Nanotechnol. 2024, 15, 180–189, doi:10.3762/bjnano.15.17

Graphical Abstract
  • of these systems to serve as medication and imaging agent carriers for cancer treatment and diagnostics, respectively. Keywords: cancer; chlorambucil; F127-folate; IR780; iron oxide nanoparticles; PLGA; theragnostics; Introduction Theragnostic nanoparticles (NPs) are a diagnostic and therapeutic
  • oxide) (PEO). To improve the targeting ability of nanoparticles, ligands are typically designed to be located on the exterior of nanoparticles. Typically, ligands are cell-type-specific monoclonal antibodies, RGD peptides for the overexpression of the asialoglycoprotein receptor on cancer cells [5
  • ], mannose for the mannose receptor on activated macrophages [6][7], and folic acid for the overexpression of the folate receptor on the surface of cancer cells and activated macrophages [8]. Thus, in this study, PLGA was chosen for NP formulation since it is a biocompatible and biodegradable material
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2024

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • elevated accumulation of Zn [1][3]. Long-term, high-dose Zn supplementation disrupts copper intake, induces brain cell death, contributes to prostate cancer, and also functions as a gliotoxin and a neurotoxin [3][4]. Conversely, the most common micronutrient deficiency of crop plants is Zn deficiency
PDF
Album
Full Research Paper
Published 23 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • treatment of central nervous system disorders [2], digestive system diseases [3], cancer, diabetes, inflammation, and infections. Nevertheless, BBR has a low bioavailability due to its poor water solubility, which imposes a regular intake of BBR drugs at a high dose. Recently, innovative technologies have
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • system when they reach the end of their lifetime [11][12]. Similar data were reported for nanoparticulate systems [13]. Other examples are viruses [14] and cancer cells which can adapt their mechanical properties multiple times during the process of metastasis formation [15]. Looking at these examples
PDF
Album
Perspective
Published 23 Nov 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • to confirm the uptake of CUR-HSA-MPs by cancer cells. Our studies revealed that HSA-MPs are potentially promising vehicles for increasing the solubility and bioavailability of CUR. Keywords: albumin submicron particles; cancer therapy; curcumin; drug delivery; Introduction Curcumin (CUR) is a
  • especially anticancer potential [1][2]. Several in vivo and in vitro studies in recent years have demonstrated that CUR can influence cancer cell proliferation, invasion, angiogenesis, and metastasis [3]. It has been reported that CUR exerts anticancer effects in human breast cancer cells (MCF-7) by
  • silk core–shell nanoparticles show high cytotoxicity and cellular uptake regarding breast cancer cells [14]. However, the effectiveness of zein nanoparticles as a delivery vehicle is limited by their poor stability, as they tend to aggregate when suspended in water [15]. Lyophilizing the particles
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • change [20][21]. Generally, photothermal nanomaterials are being used in cancer therapy, removal of bacterial biofilms, and sensing applications [22][23][24]. Photothermal nanomaterials produce heat in response to the irradiation of photons at a particular wavelength [23]. Similarly, when plasmonic
  • review is provided in Figure 2. Photothermal nanomaterials The photothermal properties of nanomaterials have been extensively studied for therapeutic applications. Heat generation under exposure to near-infrared (NIR) light is commonly used against deadly diseases such as cancer [28][29][30]. Because of
  • particle size from 50 to 4.98 nm. In another study, the size-dependent photothermal conversion efficiency of platinum nanomaterials was studied by Depciuch et al. for cancer therapy. Spherical platinum nanoparticles with diameters of 2 and 80 nm were studied regarding the photothermal activity in colon
PDF
Album
Review
Published 04 Oct 2023

Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics

  • Mamta Kumari,
  • Amitabha Acharya and
  • Praveen Thaggikuppe Krishnamurthy

Beilstein J. Nanotechnol. 2023, 14, 912–926, doi:10.3762/bjnano.14.75

Graphical Abstract
  • , India Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India 10.3762/bjnano.14.75 Abstract Nanotechnology provides effective methods for precisely delivering chemotherapeutics to cancer cells, thereby improving efficacy and reducing off-target side effects. The targeted delivery
  • higher binding affinity and specificity, mAbs have received a lot of attention for the detection of selective cancer biomarkers and also for the treatment of various types of cancer. Antibody-conjugated nanoparticles (ACNPs) are an effective targeted therapy for the efficient delivery of
  • chemotherapeutics specifically to the targeted cancer cells. ACNPs combine the benefits of NPs and mAbs to provide high drug loads at the tumor site with better selectivity and delivery efficiency. The mAbs on the NP surfaces recognize their specific receptors expressed on the target cells and release the
PDF
Album
Review
Published 04 Sep 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • for cancer treatment [31]. Results and Discussion Sepiolite–biopolymer microalgal biohybrids Sepiolite, a microfibrous hydrated magnesium silicate with the formula Si12O30Mg8(OH,F)4(H2O)4·8H2O [32][33][34], shows interesting surface properties and high viscosity [27][33][34][35]. These properties make
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field

  • Ruslan A. Rytov and
  • Nikolai A. Usov

Beilstein J. Nanotechnol. 2023, 14, 485–493, doi:10.3762/bjnano.14.39

Graphical Abstract
  • the tumor in the range of 41–43 °C over several medical treatments leads to the tumor destruction, as well as to the activation of the body’s immune response to cancer cells [8]. However, the introduction of MH into clinical practice is hindered by a number of difficulties. Unfortunately, it is not
PDF
Album
Full Research Paper
Published 14 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • various material phenomena other than bandgap absorption for heat generation in nanoparticles (NPs), leading to a rapid proliferation of materials for the same. For example, organic materials undergo rapid internal relaxation by the PT effect and are often desired in cancer treatment research as they
  • resonances in the UV–vis–IR part of the electromagnetic spectrum are especially researched on for PT applications [13], with excellent reviews on materials for mid-IR applications [14], cancer treatment [15], antibacterial research [16], solar-driven vapour evaporation [16], solar collectors [11][17][18
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • , Selangor, 43900, Malaysia School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong 10.3762/bjnano.14.32 Keywords: biocompatible nanoparticles; cancer cells; carrageenan; cytotoxic selectivity; green synthesis methods; nanobiotechnology; SARS-CoV-2; self
  • infection caused by SARS-CoV-2. Another important topic covered in this thematic issue is presented in this article: “In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles” [7]. This work explores the use of pineapple waste for the synthesis of silver and
  • cytotoxicity activity on cancer and healthy cells. The results showed a selective cytotoxicity of the nanoparticles towards cancer cell compared to that towards monocytes. This finding gives rise to the development of a new system where cytotoxicity can be selective. This may benefit future research in the
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • glioblastoma) and ARPE-19 (human retinal pigment epithelium) cells. Both NPs showed anticancer activity, but Ch/Q-Ag NPs seemed to be more effective on cancer cell lines (U-118 MG) in comparison to healthy ones (ARPE-19). Furthermore, the antibacterial activity of Ch/Q- and Ch/CA-Ag NPs against Gram-negative
  • first time the one-pot synthesis of Ch/Q- and Ch/CA-Ag NPs and their biological properties (anticancer and antibacterial). Ag NPs have been prepared and characterized by UV–vis, FTIR, and TEM measurements. In another study of ours, Lomustine, a common drug against glioblastoma cancer, was applied at a
  • high dose (500 µM) for 24 h. It decreased cell viability by 75% in glioblastoma cells and by 25% in non-cancerous cells (data not shown). From this, it can be concluded that the selected cancer drug is highly specific to the cancer cells [56]. Therefore, human glioblastoma (U-118 MG) cell lines were
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

The steep road to nonviral nanomedicines: Frequent challenges and culprits in designing nanoparticles for gene therapy

  • Yao Yao,
  • Yeongun Ko,
  • Grant Grasman,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2023, 14, 351–361, doi:10.3762/bjnano.14.30

Graphical Abstract
  • materials have had an impact include their use as vaccines, cancer therapies, and in the treatment of rare genetic disorders [1][2][3]. Still, there are several impediments to characterizing, understanding, and controlling the interactions between NPs and biological substrates [4][5][6]. Standardization of
PDF
Album
Supp Info
Perspective
Published 17 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • the treatment of a vast number of diseases including cancer and neurological diseases. Continuous effort in the field of designing novel polymeric nanoparticle-based formulations might contribute to reduce the existing gap between preclinical and clinical models. This extensive research might overcome
PDF
Album
Review
Published 13 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • bidirectional vascular permeability, which may contribute to the formation of cancer metastases. In this review we are focusing on the effect of metal and polymeric NPs on mechanism and degree of induction of NanoEL, as well as on the benefits and risks of using NPs that induce endothelial leakiness. Keywords
  • understanding of NP metabolism, NP toxicity, or their possible participation in unintended bidirectional vascular permeability, which may contribute to the formation of cancer metastases. For this reason, NPs with different physicochemical properties, which can cross the endothelial barrier in a controlled
  • conditions, such as cancer, the distance between endothelial cells significantly widens (up to 2000 nm). Most nanomedicine capitalizes on the size of these gaps and relies on appropriately sized NPs to cross the gaps and accumulate at specific sites [31]. In the case of anticancer nanomedicine, an important
PDF
Album
Review
Published 08 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic
  • nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties
  • of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • selecting candidates for therapies with tyrosine kinase inhibitors against the human epidermal growth factor receptor (EGFR TKI therapies) and further monitoring cancer treatment efficacy and cancer development. Acquired resistance due to various genetic aberrations is an unavoidable problem during EGFR TKI
  • intracellular internalization, and bring advantages over conventional nanocarriers. Keywords: co-delivery nanoparticles; combinatorial therapy; EGFR TKI resistance; non-small cell lung cancer (NSCLC); overcoming and preventing resistance; Introduction Among the malignant diseases, lung cancer takes the lead
  • in mortality. Also, it is the second most frequently diagnosed cancer (11.4% of the total cases), surpassed only by female breast cancer (11.7%) [1][2][3]. According to the WHO International Agency for Research on Cancer in 2020 (GLOBOCAN database), around 1.8 million new lung mortalities were
PDF
Album
Review
Published 22 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • siRNA from the endosome. In another example, a supramolecular nanoparticle was prepared from a linear CyD-based polymer, hydrophilic polyethylene glycol bearing an adamantane at the end, and siRNA [64]. By attaching a human transferrin protein, this composite was steered to target cancer cells to
  • nanoassemblies (pale green balls in the third row from the top). Due to high biocompatibility and tumor-targeting capacity of HA, these ternary nanoassemblies effectively entered cancer cells. Upon UV irradiation (365 nm), the azobenzene isomerizes from the trans form to the cis form, disassembling the α-CyD
  • inclusion complex (thus, the ternary assembly is also disassembled). As the result, the siRNA cargo is released and shows excellent cytotoxicity against cancer cells. In Figure 5, NIR light is used (instead of UV in Figure 4) to release siRNA at the target site. As described in section 2.3, the NIR
PDF
Album
Review
Published 09 Feb 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • . Application trends of riboflavin-stabilized SWCNTs Small-diameter SWCNT–riboflavin conjugates represent a promising class of nanomaterials for cancer treatment and targeted riboflavin delivery [26][27][28]. It has been shown that riboflavin carrier protein is highly overexpressed in several cancer tissues
  • such as melanoma, luminal 45 A breast cancer, and squamous cell carcinoma. Riboflavin-covered SWCNTs have immense potential in detecting tumors since riboflavin is selectively attached to the riboflavin carrier protein in the tumor cells while the photoluminescence increased by SWCNTs allows for high
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • , Saltillo Coahuila, 25294, México 10.3762/bjnano.13.124 Abstract Green synthesis may be a useful approach to achieve selective cytotoxicity of silver nanoparticles on cancer cells and healthy cells. In this study, the concomitant biosynthesis of silver (Ag)/silver chloride (AgCl) nanoparticles from
  • pineapple peel extracts and their behavior on the breast cancer cell line MCF-7 is shown. Bioreactions were monitored at different temperatures. Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy
  • -dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) techniques were used to characterize nanoparticle development. The breast cancer cell line MCF-7 was used as a test model to study the cytotoxic behavior of Ag/AgCl nanoparticles and, as a counterpart, the nanoparticles were also
PDF
Album
Full Research Paper
Published 13 Dec 2022

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • healthcare strategies that link routine AFM measurements with computer analysis, real-time communication with healthcare providers, and medical databases. This approach would be appropriate for diseases such as cancer, lupus, arteriosclerosis and arthritis, among others, which bring about significant
  • healthcare strategies related to diseases or conditions that are associated with mechanical changes in the tissues involved. Some examples include cancer, arteriosclerosis, lupus, arthritis and glaucoma, among others. Within this strategy we highlight the development of application-specific sensors, real
  • the bench-to-bed connection has not yet been clearly established, despite a variety of mechanobiological studies for diseases such as cancer [18][20] (we do recognize that industrial adoption of AFM methods does not necessarily result in citation of academic papers and are aware that AFM methods have
PDF
Album
Perspective
Published 09 Dec 2022
Other Beilstein-Institut Open Science Activities