Search results

Search for "carbon" in Full Text gives 1096 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • cause little damage to adjacent healthy tissues due to extremely localized heating [3]. Generally, the reduction of material dimensions to the nanoscale, such as in graphene, carbon nanotubes (CNT) and polymers, leads to an enhancement of the PT effect due to factors such as improved thermal
PDF
Album
Review
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • . Small volumes of Ch/Q- and Ch/CA-Ag NPs were placed on carbon-coated copper grids and allowed to evaporate at room temperature. For negative staining, a drop of freshly prepared 2% uranyl acetate solution was dripped on the copper grid, and excess liquid is removed by a piece of paper after 2 min. Zeta
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • allow for the integration of multiple functions derived from various types of nanocatalysts, such as semiconductor nanoparticles, plasmonic metals, and carbon-based and magnetic oxides, into the same host matrix. This enables effective tuning of the photocatalytic characteristics of the final
  • nanocomposite by extending the lifetime of the photogenerated carriers. It makes the catalysts recoverable by using external magnets and extends the range of absorption to the visible region for photocatalysis. According to [177][178][179][180], a junction between carbon-based and semiconductor materials can
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • -assembled particles, cover slides described in the previous section were used. The slides were dried under vacuum and then adhered onto an aluminum sample holder using carbon tape. The samples were coated with platinum for 30 s using an EM ACE200 vacuum coater (Leica Microsystems GmbH, Wetzlar, Germany
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • an efficient Pt-based catalyst for polymer electrolyte membrane fuel cells (PEMFCs) by using a cost-effective and efficient physical method to deposit platinum nanoparticles (PtNPs) on carbon supports directly from the platinum target. The method developed avoids the chemical functionalization of the
  • carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved
  • thanks to a specially designed electromechanical system that mixed the carbon support particles during platinum deposition. In the studies, Vulcan XC-72R carbon black powder, a popular material used as support in the anodes and cathodes of PEMFCs, and a porous carbon material with a high degree of
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • , 11000 Belgrade, Serbia 10.3762/bjnano.14.17 Abstract Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first
  • time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling–encapsulation–shrink method. Analyses of the results obtained by different
  • oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging. Keywords: antibacterial; bioimaging; carbon quantum dots; precursor; reactive oxygen species
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • samples dealloyed for 60 min in HCl and that for three selected Ag compositions is reported in Table 1. The sample showing the best SERS efficiency (i.e., AlAg30) is also the one with the highest concentration of Ag (54 atom %) and the lowest carbon concentration (9.1 atom %) on the surface. Besides the
  • property for this sample. Conversely, the lower SERS efficiency for the sample AlAg36 dealloyed for 60 min can be associated to the presence of a higher carbon content on the surface (17.8 atom %) and the rather low amount of silver on the surface (34.8 atom %). As already reported, the presence of carbon
  • on a metal surface induces hydrophobicity which can also affect the bonding with RhB molecules [30]. The carbon observed on the surface of the different samples is the result of the contamination of the substrate during wet etching and by the environment during storage [46]. Overall, the good
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • . Characterization methods Transmission electron microscopy experiments were performed using a Hitachi H600 microscope operating at an acceleration voltage of 75 kV. The samples were prepared by depositing one drop of the colloidal dispersion on conventional carbon-coated copper grids. The liquid evaporated in the
PDF
Album
Full Research Paper
Published 06 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • °C occurs at a negligible rate; thus, its impact is insignificant [34]. At temperatures above 200 °C, (310 °C in the case of 1-octadecene and 255 °C for diphenyl and paraffin), Fe(III) alkanoate undergoes decarboxylation thermolysis accompanied by breaking of the FeO–C bonds. The release of carbon
  • preparation conditions, especially the selection of higher (18 and 11 carbon atoms) fatty acids – the OA-stabilized nanoparticles were significantly smaller (8–13 nm) compared to UA-stabilized ones (11–16 nm). Furthermore, highly monodispersed spherical nanoparticles creating stable toluene dispersions, were
  • crystallites obtained by estimating the expansion of the X-ray diffraction line (DXRD calculated with Scherer, optionally Rietveld, refinement), which indicated a single magnetic domain characteristic of the TMO-I nanoparticle sample. When a stabilizer with a shorter carbon chain (i.e., UA) is used under the
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • Fernanda R. Leivas Marcia C. Barbosa Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS, Brazil 10.3762/bjnano.14.1 Abstract In this work, we propose a method to harvest liquid water from water vapor using carbon nanocones. The condensation
  • slowing down when confined in biological structures with the presence of hydrophobic and hydrophilic sites [25]. Water confined in hydrophobic structures, such as carbon nanotubes with diameters below 2 nm, exhibits a fast flow that exceeds values provided by classical hydrodynamics [26]. This super flow
  • makes the process energetically costly. A geometry that combines a large surface for capturing water and a small radius for making water molecules flow fast is the nanocone. Carbon nanocones (CNCs), also called nanohorns are conical structures that are predominantly made of carbon, typically 2–5 nm in
PDF
Album
Full Research Paper
Published 02 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • novel approach to disperse and extract small-diameter single-walled carbon nanotubes (SWCNTs) using an aqueous solution of riboflavin and Sephacryl gel. The extraction of small-diameter semiconducting SWCNTs was observed, regardless of the initial diameter distribution of the SWCNTs. Dispersion of
  • between the SWCNTs and gel media. Our experimental findings are supported by ab initio calculations demonstrating the impact of the riboflavin wrapping pattern around the SWCNTs on their interaction with the allyl dextran gel. Keywords: carbon nanotubes; photoluminescence spectroscopy; riboflavin; size
  • exclusive gel chromatography; SWCNT extraction; Introduction The unique physical and chemical properties of single-walled carbon nanotubes (SWCNTs) promise multiple high-end applications varying from biomedicine to photonics and electronics [1][2][3]. Rapid technology development and growing demand for
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • amount of the ionic form results in rapid direct photolysis. Direct photolysis of aqueous DBMP was mainly initiated by photolytic cleavage of the bromine–carbon bond and the formation of bromide ions. The half-lives of direct photolysis for phenol and DBMP were 1732.9 and 22 min, respectively. These
  • transfer can occur during the adsorption of organic compounds on magnetite. In the presence of adsorbed aryl halogenated compounds on the catalyst surface, the accumulated electrons are available to activate carbon–halogen bonds via dissociative electron transfer [38][39]. The electron from the catalyst
  • conduction band is injected into the unoccupied orbital of halogenated aromatics, resulting in the breaking of carbon–halogen bonds. For the Fe2+ and Fe3+ ions on the octahedral sites, electron transfer between these ions is feasible without substantial excess energy [40]. Therefore, electrons could be
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • -603103, Tamil Nadu, India 10.3762/bjnano.13.125 Abstract A TiO2@MWCNTs (multi-wall carbon nanotubes) nanocomposite photoanode is prepared for photoelectrochemical water splitting in this study. The physical and photoelectrochemical properties of the photoanode are characterized using field emission
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
  • been developed to increase the absorption of visible solar light [6][7]. Notably, carbon nanotubes (CNTs) are a promising material for visible-light absorption [8]. A combination of TiO2 with CNTs can effectively enhance the separation of e−/h+ pairs based on the high electric conductivity of CNTs
PDF
Album
Full Research Paper
Published 14 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • discussion below), (ii) the substitution of Co ions with other metal ions, such as Mg, Al, Fe, Ni, Mn, V [10][11][12][13][14][15][16][17][18][19][20][21][22], or (iii) the surface modification by carbon, metal, or oxide coatings [15][16]. Nanomaterials are preferred for the use in energy storage and
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • probe using bioinformatics tools, and it was also validated in wet-lab experiments. As a detection platform, a screen-printed carbon electrode (SPCE) enhanced with a nanocomposite containing gold nanoparticles and graphene was used. The morphology of the nanoparticles was analysed by field-emission
  • carbon electrode; Introduction The Southeast Asian box turtle (BT), Cuora amboinensis, is an endangered and protected turtle species. Due to its high value as an exotic food item and in traditional medicine, it ends up being a profitable item in the illicit wildlife trade [1]. Turtles contain active
  • surface-to-volume ratio [37][38][43][44][45][46]. Biomolecules such as DNA may readily modify AuNPs by adding thiol and amine groups via Au–S or Au–N links without losing their activity [38][47]. In electrocatalytic applications, the combination of carbon-based materials with metal nanoparticles has been
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • determined and calculated using the following formula: The morphology of AB-LNPs was obtained on a Hitachi HT7700 transmission electron microscope (TEM, Hitachi, Japan). AB-LNPs were diluted and plated on a carbon-coated copper grid. The stability of AB-LNPs The stability of AB-LNPs was studied by measuring
PDF
Album
Full Research Paper
Published 02 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • -photoresponsive hexagonal boron nitride (HBN) into a visible-light-responsive material. The carbon modification was achieved through a solid-state reaction procedure inside a tube furnace under nitrogen atmosphere. In comparison to HBN (bandgap of 5.2 eV), the carbon-modified boron nitride could efficiently
  • absorb LED light irradiation with a light harvesting efficiency of ≈90% and a direct bandgap of 2 eV. The introduction of carbon into the HBN lattice led to a significant change in the electronic environment through the formation of C–B and C–N bonds which resulted in improved visible light activity
  • plots) and charge trapping analysis confirmed the dominance of e−, O2−•, and •OH as dominant reactive oxygen species. The carbon modification could effectively remove 93.83% of methylene blue (MB, 20 ppm solution) and 48.56% of phenol (10 ppm solution) from the aqueous phase in comparison to HBN which
PDF
Album
Full Research Paper
Published 22 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • : iron ore, coke and huge amounts of very hot air are supplied to a blast furnace (Figure 1a). Coke and air produce hot carbon monoxide, which reduces the iron ore to liquid metallic iron. The hot air is pressed into the lower part of the furnace via double-walled, water-cooled pipes called tuyères that
PDF
Album
Perspective
Published 17 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • transform solar energy into storable chemical energy. Because of its minimal energy intake and carbon footprint, it is eco-friendly and promising. Two examples are the conversion of CO2 to hydrocarbons and water splitting to H2 and O2 [36][37]. Also, it is essential in domains including pollution
  • simple hydrothermal technique was applied by Liu et al. to modify BiVO4 heterojunctions with carbon quantum dots [106]. Exceptional photocatalytic performance for the degradation of RhB dye under visible light was exhibited by CNQDs-ms/tz-BiVO4 and NCQDs-ms/tz-BiVO4 composites. The reason for their
  • , environmental monitoring, disinfection, and sterilization are all areas where the photocatalytic breakdown of contaminants is used. Primary energy uses included photocatalytic hydrogen production from carbon dioxide, conversion of carbon dioxide to specific molecular organic matter, and nitrogen fixation [1
PDF
Album
Review
Published 11 Nov 2022

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • unit to dehydrate the tissue prior to imaging. They were then placed on a double stick conductive carbon tape affixed to a stub and sputter coated with a platinum/palladium coating. Toes were then viewed using a ThermoFisher Scientific Quanta™ 3D 200i SEM in the Central Facility for Advanced Microscopy
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • factor in determining the resolution of microscopy, and the performance of probes varies in various modes and application requirements. This paper reviews the latest research results in metal, carbon nanotube, and colloidal probes and reviews their related methods and techniques, analyses the advantages
  • the direction of new probes and further promotes the broader and deeper application of scanning probe microscope (SPM). Keywords: AFM; carbon nanotube probe; colloid probe; metal probe; Introduction AFM represents a well-established technique for the investigation of the nanosurface morphology
  • mechanical properties of the cantilever beam directly affect the performance, measurement resolution, and image quality of the AFM instrument. AFM probe tips [9][10] are generally fabricated with coatings, carbon nanotubes, magnetic nanoparticles, or even protein functionalization. A combination of probe
PDF
Album
Review
Published 03 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • catalytic and photocatalytic properties [46] porous TiO2 frameworks formed by the annealing of titanicone films may serve as catalytic supports [47]. Titanicone films can also be pyrolyzed under Ar to yield conducting TiO2/carbon composite films with important electrochemical applications as electrodes for
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • durable. Other options for chemically treated superhydrophobic surfaces, such as the use of fluorinated silanes, fluoropolymer coatings, and carbon nanotubes, exist, but are either rather costly to apply and/or potentially harmful to the environment. A much simpler and cheaper option is the fabrication of
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • molecular handedness. Chiral modified carbons Carbon nanomaterials possess attractive features since they are low cost, capable to be produced in large-scale, and have good stability and bio-compatibility, which makes them an excellent candidate for sensing applications [147][148][149]. Some carbon
  • nanostructures such as carbon nanotubes and fullerenes were demonstrated to have chirality. However, the preparation of chirality-pure substrates still requires the combination of specific carbon nanostructures and homochiral functionalizations [150][151]. Protein misfolding, which may form amyloid aggregates
  • oligomers, and the subsequent fibrillation process. The results give interesting insights into the crucial roles of biological membranes on protein amyloidosis, and how intrinsic chirality contributes to this process. It also brings the prospect of chiral-modified carbon nanostructures for biological and
PDF
Album
Review
Published 27 Oct 2022
Other Beilstein-Institut Open Science Activities