Search results

Search for "chitosan" in Full Text gives 103 result(s) in Beilstein Journal of Nanotechnology.

Current status of using adsorbent nanomaterials for removing microplastics from water supply systems: a mini review

  • Nguyen Thi Nhan and
  • Tran Le Luu

Beilstein J. Nanotechnol. 2025, 16, 1837–1850, doi:10.3762/bjnano.16.127

Graphical Abstract
  • . also confirmed that the reaction mechanisms of MPs and graphene oxide–chitosan sponges were electrostatic interactions, hydrogen bonding, and π–π interactions through Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy measurements [69]. Integrating different types of
  • performance for six cycles with only a 5% efficiency loss, and enabled in situ degradation of MPs through thermal treatment to prevent desorption risks [75]. A high capture efficiency of microplastics was also achieved using novel magnetic composite nanoparticles composed of silica, gelatin, and chitosan. At
  • (a) the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of chitosan (CS), bacterial cellulose (BC), crosslinked CS, and PS. (b) Energy gaps among PS, CS, BC, and crosslinked-CS. (c) scenarios of hardwood vessel-inspired chitosan-based sponges (BGCS)-120
PDF
Album
Review
Published 21 Oct 2025

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
  • . Therefore, different polymer surfaces impact the NPs’ fate in the GIT in a different way [20]. Polymers are classified as either natural, derived from natural products, or synthetic, chemically synthesized from monomers. Examples of natural polymers include chitosan, alginate, and hyaluronic acid. Synthetic
  • encapsulation of hydrophobic drugs [55]. Chitosan, a natural polymer, predominantly forms NPs via ionic gelation, where interactions with multivalent counterions create stable polymeric networks without the use of organic solvents, thereby ensuring high biocompatibility and minimal toxicity. Similarly, alginate
  • hydrophilic polymers (e.g., polyethylene glycol (PEG) or polysaccharides) or mucoadhesive agents such as chitosan, which can enhance colloidal stability, promote mucus permeation, and protect the nanocarrier from enzymatic degradation in the GIT. Such coatings have been explored to improve the pharmacokinetic
PDF
Album
Review
Published 10 Oct 2025

Prospects of nanotechnology and natural products for cancer and immunotherapy

  • Jan Filipe Andrade Santos,
  • Marcela Bernardes Brasileiro,
  • Pamela Danielle Cavalcante Barreto,
  • Ligiane Aranha Rocha and
  • José Adão Carvalho Nascimento Júnior

Beilstein J. Nanotechnol. 2025, 16, 1644–1667, doi:10.3762/bjnano.16.116

Graphical Abstract
  • nanoparticles Polysaccharides are a class of polar polymers frequently employed in polymeric systems and nanotechnologies, including the creation of polysaccharide nanoparticles [28]. Substances such as chitosan, hyaluronic acid, alginate, starch, and their derivatives are most commonly used in nanoparticles
  • properties [142][143]. The tests showed that the nanoparticles containing MTX and DOX were around 400 times more effective and yielded higher cytotoxicity in CT26, MDA-MB-231, and NAR cancer cells, compared to the free drugs [60]. CN117534780 (2024) uses chitosan–glucan nanopolysaccharide complexes (CGCs
  • ) obtained from fungi to prepare antitumor and immunomodulatory drugs, with chitosan–glucan being an API. Chitosan–glucan is a biopolymer complex composed of chitosan, a deacetylated derivative of chitin, and glucan, a polysaccharide commonly found in fungal cell walls, cereals, and seaweed. Chitosan
PDF
Album
Review
Published 22 Sep 2025

Venom-loaded cationic-functionalized poly(lactic acid) nanoparticles for serum production against Tityus serrulatus scorpion

  • Philippe de Castro Mesquita,
  • Karla Samara Rocha Soares,
  • Manoela Torres-Rêgo,
  • Emanuell dos Santos-Silva,
  • Mariana Farias Alves-Silva,
  • Alianda Maira Cornélio,
  • Matheus de Freitas Fernandes-Pedrosa and
  • Arnóbio Antônio da Silva-Júnior

Beilstein J. Nanotechnol. 2025, 16, 1633–1643, doi:10.3762/bjnano.16.115

Graphical Abstract
  • nanoparticles had the same response when compared with that of AH standard formulation [11]. Cationic PLA nanoparticles produced in this study demonstrated better immune stimulation behavior. These results can be found in other chitosan-based cationic nanoparticle formulations [1][45]. The cationic properties
PDF
Album
Full Research Paper
Published 17 Sep 2025

Nanomaterials for biomedical applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Filippo Pierini,
  • Seda Kizilel and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 1499–1503, doi:10.3762/bjnano.16.105

Graphical Abstract
  • [9]. Along with liposomes, polymeric nanoparticles have turned out to be an equally dynamic platform. Typically, these particles are composed of biodegradable materials, such as poly(lactic-co-glycolic acid) (PLGA) or chitosan. One of the main advantages of polymers is that they can be designed to
PDF
Editorial
Published 28 Aug 2025

Synthesis and antibacterial properties of nanosilver-modified cellulose triacetate membranes for seawater desalination

  • Lei Wang,
  • Shizhe Li,
  • Kexin Xu,
  • Wenjun Li,
  • Ying Li and
  • Gang Liu

Beilstein J. Nanotechnol. 2025, 16, 1380–1391, doi:10.3762/bjnano.16.100

Graphical Abstract
  • , indicating the potential for repeated use and long-term application [21]. Zhao and Park’s group incorporated in situ synthesized silver-loaded graphene oxide (GO-Ag) nanoparticles into polyvinyl alcohol/chitosan (PVA/CS) electrospun nanofiber membranes to boost desalination performance. The PVA/CS/GO-Ag
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2025

Enhancing the therapeutical potential of metalloantibiotics using nano-based delivery systems

  • Alejandro Llamedo,
  • Marina Cano,
  • Raquel G. Soengas and
  • Francisco J. García-Alonso

Beilstein J. Nanotechnol. 2025, 16, 1350–1366, doi:10.3762/bjnano.16.98

Graphical Abstract
  • ]. Dellera et al. developed wound dressings containing silver sulfadiazine 7 and platelet lysate encapsulated in SLNs to treat persistent skin lesions. The Ag-encapsulating SLNs were prepared using ultrasound and hot homogenization techniques and incorporated into chitosan glutamate or hydroxypropylmethyl
  • . Another important aspect is that conjugates were localized within LAMP-1-positive late endosomal compartments, supporting their capacity for sustained intracellular drug release. β-Chitosan nanoparticles (β-CS-NPs) can also be used to encapsulate antimicrobial zinc complexes, as reported by Zhang and
PDF
Album
Review
Published 15 Aug 2025

Better together: biomimetic nanomedicines for high performance tumor therapy

  • Imran Shair Mohammad,
  • Gizem Kursunluoglu,
  • Anup Kumar Patel,
  • Hafiz Muhammad Ishaq,
  • Cansu Umran Tunc,
  • Dilek Kanarya,
  • Mubashar Rehman,
  • Omer Aydin and
  • Yin Lifang

Beilstein J. Nanotechnol. 2025, 16, 1246–1276, doi:10.3762/bjnano.16.92

Graphical Abstract
  • the cytoplasm [149][150]. In contrast, Li et al. synergistically delivered a miR-144/451a cluster by constructing chitosan NPs (CAs) camouflaged with macrophage membranes for oral squamous cell carcinoma (OSCC) treatment. It was demonstrated that CAs coloaded with miR-144-MEXO/CA-miR-451a NPs
PDF
Album
Review
Published 05 Aug 2025

Functional bio-packaging enhanced with nanocellulose from rice straw and cinnamon essential oil Pickering emulsion for fruit preservation

  • Tuyen B. Ly,
  • Duong D. T. Nguyen,
  • Hieu D. Nguyen,
  • Yen T. H. Nguyen,
  • Bup T. A. Bui,
  • Kien A. Le and
  • Phung K. Le

Beilstein J. Nanotechnol. 2025, 16, 1234–1245, doi:10.3762/bjnano.16.91

Graphical Abstract
  • support the growth of microorganisms, making them spoil as early as 1–2 days after harvest without any processing [39]. Several attempts have been made that could extend strawberry preservation only up to 6, 9, and 10 days, respectively, with PVA/chitosan/1,8-cineole/cyclodextrin [53], PVA with lids [54
PDF
Album
Full Research Paper
Published 04 Aug 2025

Hydrogels and nanogels: effectiveness in dermal applications

  • Jéssica da Cruz Ludwig,
  • Diana Fortkamp Grigoletto,
  • Daniele Fernanda Renzi,
  • Wolf-Rainer Abraham,
  • Daniel de Paula and
  • Najeh Maissar Khalil

Beilstein J. Nanotechnol. 2025, 16, 1216–1233, doi:10.3762/bjnano.16.90

Graphical Abstract
  • concept on hydrogels, underlining compounds such as chitosan and alginate, and methods used for their preparation. Nanogels, with their attractive features, such as high drug encapsulation and penetration enhancer embedding, are also addressed. Finally, the application of these systems in dermal
  • [54], polyvinyl alcohol (PVA) [55], as well as natural polymers, notably chitosan [56][57] and alginates [58][59], have been tested in hydrogel formulations both individually and in combinations [60][61][62]. The variety of compounds that can be used in hydrogel formulations explains the large number
  • that can be topically and systemically applied [66]. Table 1 summarizes the composition, cross-linkers, and preparation methods of hydrogels related to dermal applications. Chitosan is one of the most versatile polymers used to prepare hydrogels. It can be combined with gelatin [122], pectin [123
PDF
Album
Review
Published 01 Aug 2025

Chitosan nanocomposite containing rotenoids: an alternative bioinsecticidal approach for the management of Aedes aegypti

  • Maria A. A. Bertonceli,
  • Vitor D. C. Cristo,
  • Ivo J. Vieira,
  • Francisco J. A. Lemos,
  • Arnoldo R. Façanha,
  • Raimundo Braz-Filho,
  • Gustavo V. T. Batista,
  • Luis G. M. Basso,
  • Sérgio H. Seabra,
  • Thalya S. R. Nogueira,
  • Felipe F. Moreira,
  • Arícia L. E. M. Assis,
  • Antônia E. A. Oliveira and
  • Kátia V. S. Fernandes

Beilstein J. Nanotechnol. 2025, 16, 1197–1208, doi:10.3762/bjnano.16.88

Graphical Abstract
  • significant advancement, vector management remains the primary strategy for preventing these urban arboviruses. In this context, the development of pesticides that offer safer alternatives for the environment and human health has become urgent. In this study, a chitosan-based nanocomposite was developed as a
  • with smaller size, improved polydispersity index, and enhanced stability, evidenced by a higher zeta potential. FTIR analysis confirmed rotenoid incorporation into the nanocomposite and suggested hydrogen bonding or potential covalent interaction with chitosan functional groups. Bioassays demonstrated
  • nanoparticles exhibited no adverse effects on larval survival, which is attributed to the biocompatibility and nontoxic nature of chitosan, a biodegradable polysaccharide structurally related to the insect exoskeleton and widely recognized for its environmental safety. Additionally, neither rotenoids nor the CS
PDF
Album
Full Research Paper
Published 28 Jul 2025

Soft materials nanoarchitectonics: liquid crystals, polymers, gels, biomaterials, and others

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2025, 16, 1025–1067, doi:10.3762/bjnano.16.77

Graphical Abstract
PDF
Album
Review
Published 04 Jul 2025

Synthesis of biowaste-derived carbon-dot-mediated silver nanoparticles and the evaluation of electrochemical properties for supercapacitor electrodes

  • Navya Kumari Tenkayala,
  • Chandan Kumar Maity,
  • Md Moniruzzaman and
  • Subramani Devaraju

Beilstein J. Nanotechnol. 2025, 16, 933–943, doi:10.3762/bjnano.16.71

Graphical Abstract
  • also shown that AgNPs actively improve the electrochemical characteristics of different electrode materials. Salve et al. reported a noteworthy charge-storing capacity of 367.16 mF/cm2 of the synthesized hybrid material, PGE/AgNPs/CS (pencil graphite electrodes/silver nanoparticles/chitosan) [15
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • microhardness without compromising biocompatibility [7]. In another work, the formulation of an injectable calcium phosphate cement–chitosan–graphene oxide (GO) composite was found to be effective. This composite fostered the proliferation of human dental pulp stem cells [8]. Despite these promising findings
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • facilitates strong interaction with APT, resulting the enhanced encapsulation efficiency. Nazli Erdogar et al. achieved a higher encapsulation efficiency for aprepitant with PEG–chitosan-coated cyclodextrin nanocapsules [16]. Zeta potential, particle size analysis and polydispersity index Zeta potential is a
  • /chitosan-coated cyclodextrin nanocapsules in acidic and basic media [16]. There is increased wetting of amorphous APT after loading into SLNs with increased surface area leading to rapid and consistent release. Drug release kinetics The drug release data obtained from APT-CD-NP1 to APT-PX-NP8 were analyzed
PDF
Album
Full Research Paper
Published 15 May 2025

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • cross-linking were used to develop a silk fibroin/chitosan/nanohydroxyapatite (SF/CS/nHA) scaffold in three different concentrations (3%, 4%, and 5%). The 4% SF/CS/nHA scaffold was shown to be the most effective for bone repair. In vitro studies involved seeding bone marrow mesenchymal stem cells (BMSCs
  • . developed a micro–nanofiber dressing by electrospinning a blend of SF, chitosan, and halloysite nanotubes (HNTs) loaded with the antibacterial agent chlorhexidine digluconate (CHD). The addition of HNTs considerably altered the nanofiber structure, and increased the material’s thermal stability and
  • survival, cell adhesion and proliferation, increased blood clotting capacity, and better hydrophilicity, PU was employed as the base polymer and combined with CA and zein (a natural polymer) [158]. Numerous studies have shown that manufacturing PU with organic polymers, such as chitosan, helps to create a
PDF
Album
Review
Published 24 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
  • cytotoxicity compared to poly(ʟ-arginine) alone, with a 23-fold higher TC50 value observed for HP101. In a similar study, Noh et al. investigated the use of PLR as a key component in a novel siRNA delivery system [95]. PLR was grafted onto chitosan (CS) and further PEGylated to enhance delivery efficiency and
PDF
Album
Review
Published 27 Mar 2025

Development of a mucoadhesive drug delivery system and its interaction with gastric cells

  • Ahmet Baki Sahin,
  • Serdar Karakurt and
  • Deniz Sezlev Bilecen

Beilstein J. Nanotechnol. 2025, 16, 371–384, doi:10.3762/bjnano.16.28

Graphical Abstract
  • synthesized from mucoadhesive polymers such as chitosan, alginate, cellulose, polyacrylic acid, and polymethacrylic acid have been introduced as gastroretentive drug delivery systems. The mucoadhesive properties of these polymers are attributed to electrostatic bonding between polymer and sialic acid of mucin
  • leakage of encapsulated drugs. These drawbacks make alginate challenging to be used in drug delivery applications [11][12]. Therefore, it is generally used together with other polymers, such as chitosan [13] or carboxymethyl cellulose [14], or it is modified with PEG-maleimide [15] to acquire mucoadhesion
  • , there are few studies focusing on this property when they are used as nanoparticle formulations [17]. Over the years, several valuable alginate-based applications have been reported as gastroretentive drug delivery systems, in which alginate beads were either coated with aminated chitosan [24], or
PDF
Album
Supp Info
Full Research Paper
Published 13 Mar 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia 10.3762/bjnano.16.22 Abstract This review examines strategies to enhance the mechanical properties of chitosan/polyvinyl alcohol (PVA) electrospun nanofibers, recognized for their biomedical and
  • industrial applications. It begins by outlining the fundamental properties of chitosan and PVA, highlighting their compatibility and mechanical characteristics. The electrospinning process is discussed, focusing on how various parameters and post-treatment methods influence fiber formation and performance
  • directions are proposed to overcome these obstacles and further enhance the mechanical properties of chitosan/PVA electrospun nanofibers, guiding their development for practical applications. Keywords: biomaterials; chitosan; electrospun nanofiber; mechanical properties; polyvinyl alcohol; Introduction In
PDF
Album
Review
Published 26 Feb 2025

Emerging strategies in the sustainable removal of antibiotics using semiconductor-based photocatalysts

  • Yunus Ahmed,
  • Keya Rani Dutta,
  • Parul Akhtar,
  • Md. Arif Hossen,
  • Md. Jahangir Alam,
  • Obaid A. Alharbi,
  • Hamad AlMohamadi and
  • Abdul Wahab Mohammad

Beilstein J. Nanotechnol. 2025, 16, 264–285, doi:10.3762/bjnano.16.21

Graphical Abstract
  • Fe2O3 promoted the electron–holes segregation rate and reduced the rate of recombination. A TiO2/GO/chitosan photocatalyst was synthesized by Erim et al. [73] for the degradation of CFX under UV-A irradiation. Under optimized conditions (catalyst dose of 0.327 g/L, CFX concentration of 20.29 mg/L, pH
  • 4.1, and UV-A irradiation of 60 W), the TiO2/GO/chitosan photocatalyst exhibited a prominent degradation efficiency of 95.34%. They also reported in another article that the SWCNT/ZnO/Fe3O4 combination exhibited a CFX decomposition efficiency of 94.19% at pH 5.93, 22.76 ppm CFX, and 0.46 g/L
PDF
Album
Review
Published 25 Feb 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • . Despite the beneficial properties, CNs have not been extensively researched as inherent drugs or drug/TMZ carriers for the treatment of GBM. In two papers, a hybrid made of carbon quantum dots functionalized with chitosan, polyethylene oxide, and carboxymethyl cellulose–polyvinyl alcohol provided
  • . Such a trend was observed in a study of Jun et al. [47] in which MWCNTs conjugated with chitosan oligomers and with incorporated tea polyphenols for cancer treatment were irradiated by gamma rays from 60Co for 30 min with a dose of 1.5 Gy. The irradiation also led to changes in zeta potential to lower
  • release was also provided through loading TMZ in a hybrid compound of carbon quantum dots, chitosan, polyethylene oxide, and carboxymethyl cellulose–polyvinyl alcohol (CS-PEO-CQDs/CMC-PVA) via coaxial spinning, and a transport system of CMC-PVA coating and CS-PEO-CQDs core was formed [41][42]. In a study
PDF
Album
Full Research Paper
Published 19 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • photothermal gel, composed of Au nanorods, geraniol, chitosan, and the gene-targeted drug DC_AC50 can be activated by NIR light. Photothermal activation softens the hydrogel composed of geraniol and chitosan, controlling drug release and facilitating PTT at moderate temperatures, thus yielding exceptional anti
  • inspiration from lollipops, Wang et al. developed a multilayered sodium alginate–chitosan hydrogel sphere drug delivery system, which uses ZnO-modified biocarbon (ZnO-BC) to enhance the photothermal conversion performance [70]. The hydrogel ball is embedded under the conjunctiva through surgery. ZnO-BC can
PDF
Album
Review
Published 17 Feb 2025

Clays enhanced with niobium: potential in wastewater treatment and reuse as pigment with antibacterial activity

  • Silvia Jaerger,
  • Patricia Appelt,
  • Mario Antônio Alves da Cunha,
  • Fabián Ccahuana Ayma,
  • Ricardo Schneider,
  • Carla Bittencourt and
  • Fauze Jacó Anaissi

Beilstein J. Nanotechnol. 2025, 16, 141–154, doi:10.3762/bjnano.16.13

Graphical Abstract
  • regeneration of the adsorbent. Various adsorbents including chitosan, cellulose, organophilic clays, kaolinite and montmorillonite clays, and activated carbon have been used for removing toxic compounds from polluted water [6]. Among these adsorbents, bentonite and smectite clays exhibit advantageous
PDF
Album
Supp Info
Full Research Paper
Published 10 Feb 2025

Nanocarriers and macrophage interaction: from a potential hurdle to an alternative therapeutic strategy

  • Naths Grazia Sukubo,
  • Paolo Bigini and
  • Annalisa Morelli

Beilstein J. Nanotechnol. 2025, 16, 97–118, doi:10.3762/bjnano.16.10

Graphical Abstract
  • production, effectively reducing collagen type I deposition and mitigating fibrosis. Additional nanomaterials such as superparamagnetic iron oxide nanoparticles (SPIONs) and chitosan-based NPs are engineered with liver-cell-specific ligands like lactose or galactose, enhancing their specificity for treating
PDF
Album
Review
Published 31 Jan 2025

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and chitosan (CHS), provides structural integrity, controlled release properties, and protection against premature degradation [14][15]. This hybrid structure improves the encapsulation efficiency of phytochemicals/drugs
  • half-life [97][98][99]. In this context, Imam et al. fabricated THQ-encapsulated chitosan–phospholipid hybrid nanoparticles (THQ-PLHNPs) for enhanced oral bioavailability and therapeutic efficacy against BC [100]. The fabricated PLHNPs showed outstanding mucoadhesive properties and stability in GI
  • studies in AsPC-1 and BxPC-3 cells suggested that the fabricated UA-PLHNPs exhibited much higher cellular internalization and cytotoxicity. Further, the developed AU-PLHNPs revealed negligible erythrocyte hemolytic activity. Similarly, Wang et al. fabricated UA-encapsulated chitosan-coated liposomes for
PDF
Album
Review
Published 22 Nov 2024
Other Beilstein-Institut Open Science Activities