Search results

Search for "co-exposure" in Full Text gives 6 result(s) in Beilstein Journal of Nanotechnology.

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • metals, upon release and emission, may interact with different environmental components, which may lead to co-exposure to living organisms. Nanoscale titanium dioxide (nano-TiO2) can adsorb heavy metals. The current idea is that nanoparticles (NPs) may act as carriers and facilitate the entry of heavy
  • cause co-exposure effects on living organisms. The extensive use of heavy metals in areas such as medicine and agriculture increased the negative impact of heavy metals on environment and living organisms, raising the need for risk assessment. Unlike other pollutants, heavy metals do not decompose
  • the previous work. Conclusion We have performed cytotoxicity modeling of eight heavy metal compounds adsorbed on nanoscale TiO2 regarding HK-2 cells and explored the features responsible for the toxicity mechanism. Many studies have examined the co-exposure of metal and metalloid mixtures with heavy
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • the cell divides [111]. Another study compared the endocytosis of gold and iron oxide nanoparticles in a co-exposure experiment. The authors found that the cells are not selective and internalize nanoparticles of both types. However, they found that the co-exposure induces more endocytosis events than
PDF
Album
Review
Published 27 Jul 2020

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

  • Dimitri Vanhecke,
  • Dagmar A. Kuhn,
  • Dorleta Jimenez de Aberasturi,
  • Sandor Balog,
  • Ana Milosevic,
  • Dominic Urban,
  • Diana Peckys,
  • Niels de Jonge,
  • Wolfgang J. Parak,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2017, 8, 2396–2409, doi:10.3762/bjnano.8.239

Graphical Abstract
  • Marburg, Renthof 7, 35037 Marburg, Germany 10.3762/bjnano.8.239 Abstract Little is known about the simultaneous uptake of different engineered nanoparticle types, as it can be expected in our daily life. In order to test such co-exposure effects, murine macrophages (J774A.1 cell line) were incubated with
  • scanning microscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry revealed intracellular appearance of both NP types in all exposure scenarios and a time-dependent increase. This increase was higher for both AuNPs and FeOxNPs during co-exposure. Cells
  • treated with endocytotic inhibitors recovered after co-exposure, which additionally hinted that two uptake mechanisms are involved. Cross-talk between uptake pathways is relevant for toxicological studies: Co-exposure acts as an uptake accelerant. If the goal is to maximize the cellular uptake, e.g., for
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2017

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

  • Kati Erdmann,
  • Jessica Ringel,
  • Silke Hampel,
  • Manfred P. Wirth and
  • Susanne Fuessel

Beilstein J. Nanotechnol. 2017, 8, 1307–1317, doi:10.3762/bjnano.8.132

Graphical Abstract
  • chemotherapeutics alone elevated the cell death rates only marginally to moderately (Figure 3 and Figure 4). Co-exposure of DU-145 cells with CNFs and DTX or MMC led to significantly increased cell death rates by additional 80% and 130%, respectively (Figure 3). Notably, apoptosis and not necrosis mainly
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2017

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • = 0.024) and 1.9 ± 0.3 fold (p = 0.048), respectively. A significant increase could also be measured for LPS-stimulated and co-exposure with 20 µg Ag/mL Ag NPs indicated by a value of 2.2 ± 0.6 fold (p = 0.026). In the lower compartment exposure of 30 µg Ag/mL resulted in an elevated LDH level of 1.6
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control

  • Gnanaprakash Dharmalingam,
  • Nicholas A. Joy,
  • Benjamin Grisafe and
  • Michael A. Carpenter

Beilstein J. Nanotechnol. 2012, 3, 712–721, doi:10.3762/bjnano.3.81

Graphical Abstract
  • qualitatively based on the separation between the clusters of points representing H2 exposure and clusters representing CO exposure. As the separation improves, it becomes easier to distinguish one analyte from the other. Given the range of concentrations tested for this experiment, points tend to form lines
PDF
Album
Full Research Paper
Published 31 Oct 2012
Other Beilstein-Institut Open Science Activities