Search results

Search for "current collector" in Full Text gives 29 result(s) in Beilstein Journal of Nanotechnology.

Preparation of electrochemically active silicon nanotubes in highly ordered arrays

  • Tobias Grünzel,
  • Young Joo Lee,
  • Karsten Kuepper and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2013, 4, 655–664, doi:10.3762/bjnano.4.73

Graphical Abstract
  • electrolyte to the vicinity of the current collector should allow for a ‘lateral’ expansion of the electrode material upon charging, whereas direct ‘vertical’ transport paths are maintained for the charge carriers in the solid electrode (for the electrons) and in the electrolyte (for the Li+ ions). The
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2013

AFM as an analysis tool for high-capacity sulfur cathodes for Li–S batteries

  • Renate Hiesgen,
  • Seniz Sörgel,
  • Rémi Costa,
  • Linus Carlé,
  • Ines Galm,
  • Natalia Cañas,
  • Brigitta Pascucci and
  • K. Andreas Friedrich

Beilstein J. Nanotechnol. 2013, 4, 611–624, doi:10.3762/bjnano.4.68

Graphical Abstract
  • of sulfur. In this regard, an ideal cathode would be composed of a continuous, electronically conductive carbon network coated with a monolayer of sulfur. The contact between the carbon–sulfur composite and the current collector is also a very important parameter for the performance of the Li–S
  • materials and the current collector and should form a good network between the active material and the conductive carbon. In this way, the electron transport as well as the diffusion of the lithium ions is facilitated [33]. X-Ray diffraction Lithium containing components like the cathodes after cycling in a
PDF
Album
Full Research Paper
Published 04 Oct 2013

A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

  • Wenyu Zhang,
  • Yi Zeng,
  • Chen Xu,
  • Ni Xiao,
  • Yiben Gao,
  • Lain-Jong Li,
  • Xiaodong Chen,
  • Huey Hoon Hng and
  • Qingyu Yan

Beilstein J. Nanotechnol. 2012, 3, 513–523, doi:10.3762/bjnano.3.59

Graphical Abstract
  • to improve the power density and cyclability of LIBs [17][18]. Basically, such a strategy is based on the design of a nanostructured, metal current collector, by using Cu or Al nanorods to form a 3D conducting scaffold, to improve the kinetics of Li diffusion and electron transfer in the electrode
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2012

Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

  • Hongxia Wang,
  • Meinan Liu,
  • Cheng Yan and
  • John Bell

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

Graphical Abstract
  • the TiO2 film before reaching the current collector, which is based on the conductive fluorine-doped tin oxide (FTO) substrate. Meanwhile, a parallel reaction, which involves transfer of the hole from the oxidized state of the dye (dye+) to the surrounding I− ions of the redox couple of the
PDF
Album
Full Research Paper
Published 07 May 2012
Other Beilstein-Institut Open Science Activities