Search results

Search for "density" in Full Text gives 1512 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Electrical, electrochemical and structural studies of a chlorine-derived ionic liquid-based polymer gel electrolyte

  • Ashish Gupta,
  • Amrita Jain,
  • Manju Kumari and
  • Santosh K. Tripathi

Beilstein J. Nanotechnol. 2021, 12, 1252–1261, doi:10.3762/bjnano.12.92

Graphical Abstract
  • the involvement of π-electrons responsible for the generation of charge carriers and their switching, which results in a reduction of the electron density of the overall system and an increase in the activation energy [10]. Simultaneously, there is also a decrease in the activation energy produced by
PDF
Album
Full Research Paper
Published 18 Nov 2021

A review on slip boundary conditions at the nanoscale: recent development and applications

  • Ruifei Wang,
  • Jin Chai,
  • Bobo Luo,
  • Xiong Liu,
  • Jianting Zhang,
  • Min Wu,
  • Mingdan Wei and
  • Zhuanyue Ma

Beilstein J. Nanotechnol. 2021, 12, 1237–1251, doi:10.3762/bjnano.12.91

Graphical Abstract
  • nanoflows [43]. Additionally, numerical methods can provide a controllable way to change a certain property of liquid or solid walls while other properties remain unchanged [44]. In comparison with physical experiments, numerical simulations allow researchers to study the density, velocity profiles, and
  • density on the distribution of the electrostatic potential within the EDL, many previous studies have investigated how the surface charge density can affect the solvent hydrodynamic slippage on solid surfaces. It was demonstrated by many researches that when the surface charge density increases, the slip
  • length correspondingly decreases [23][46]. Joly et al. proposed an approximate model to describe the relationship between the slip length and surface charge density. They validated the model by using a MD simulation with an ionized solution system represented by models of ideal solvents and ions [46
PDF
Album
Review
Published 17 Nov 2021

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • very weakly in the transmission through the open dot in the case when phonons couple to IQDs. However, they are reflected clearly in the density of states (DOS) of IQDs, but this is difficult to detect in transport experiments. The single T-shaped device decoupled from phonons is characterized by SU(2
  • electrodes (for the rectangular density of states of electrodes 1/2D for |E| < D, Γ = πt2/D). For the case when phonons are coupled to the open dot Γ should be replaced by , . Gdjσ denotes the Green’s function of OQDj, which according to Equation 12 can be approximately expressed as with for l = 1 and for
  • the changes of conductance with the increase of λI. Figure 9b compares the density of states on the IQDs and the corresponding transmission of OQDs for λI = 0.2 (n = 1). This picture is included as a representative example illustrating the general feature of coupling of phonons to the electrons on the
PDF
Album
Full Research Paper
Published 12 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • and co-workers. Figure 8e shows the CO sensing behavior of the fabricated films in the temperature range of 300–450 °C. Figure 8f and Figure 8g show the values of D and fractal density as functions of the temperature. The authors concluded that the sensitivity to CO was mainly influenced by channel
  • interconnections, fractal dimension, density, and average size of the fractal clusters. A sensitivity of 0.8 at 450 °C for 500 ppm of CO was achieved. Lower fractal dimension (D = 1.818 at 450 °C) and density favored a higher sensitivity towards CO. This could be due to the increased porosity of the structures
  • –Bi2O3 porous fractal structures contained abundant active sites for the adsorption of carbon dioxide and other VOCs. An improvement of the electron density was attributed to gold nanoparticles. The resulting fractal structures showed excellent sensing properties towards VOCs (100 ppm at room temperature
PDF
Album
Supp Info
Review
Published 09 Nov 2021

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • overall performance [3]. The lack of discharge performance is attributed to the sluggish kinetics of the oxygen reduction reaction (ORR) at the air cathode [4], which reduces the practical power density. Further improvements of the cathode are essential for the long-term success of metal–air batteries
  • to be both stable and adequately performing at a current density of 80 mA·cm−2. They attributed the enhanced ORR activity (compared to the cobalt-free fibres) to the presence of Co(II) species, graphitic nitrogen, and Co–Nx species. They concluded that Co3O4-enhanced carbon fibres from
  • quantitatively using the following key parameters: (1) the measured open-circuit potential EOCP (Figure 9a), (2) the current density at a given overpotential of 100 mV (Figure 9b), and (3) the required overpotential at a given current density of 333 μA·cm−2, which corresponds to a current of 1 mA (Figure 9c
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • distribution of secondary (SE) and backscattered (BSE) electrons produced due to the collision of the PE beam with the substrate. The convolution of the SE and BSE flux density with the fragmentation cross section of the precursor molecule determines the fragmentation probability of precursors at any space
  • discretized in steps of 1 eV, and JPE/SE/BSE is the flux density of PE, SE, and BSE, respectively. The dependence of the fragmentation cross section of Pt(PF3)4 on the electron energy, σfrag(E), is shown in Figure 3A by the dashed black line. Here, the dissociation of Pt(PF3)4 is considered according to the
  • molecules of specific thickness and density is first created by means of the modeller plugin of MBN Studio [20] and then delivered to the substrate. The molecular layer is created using the information on the geometry and topology of a single precursor molecule as follows. Precursor molecules are randomly
PDF
Album
Full Research Paper
Published 13 Oct 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • make SnSe of great practical importance for the next generation of thermoelectric devices. Here, we report structural, optoelectronic, thermodynamic, and thermoelectric properties of the recently experimentally identified binary phase of tin monoselenide (π-SnSe) by using the density functional theory
  • is exceptionally promising for the next generation of photovoltaic and thermoelectric devices at room and high temperatures. Keywords: density functional theory (DFT); electronic properties; lattice thermal conductivity; optical properties; thermodynamic properties; thermoelectric properties; tin
  • conductivity, which might occur through a few properties, such as a complex crystal lattice [14], large molecular mass [23], and charge density wave distortions [24]. In recent years, numerous thermoelectric alloys have shown an outstanding thermoelectric efficiency with ZT values greater than two by
PDF
Album
Full Research Paper
Published 05 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • OLED [50]. Depending on the surface coverage of the plasmonic NP, an increment in the current density by a factor of two as compared to a device without plasmonic NP has been observed. The presence of Au and Ag reduces the work function of ITO due to the formation of dipoles at the interface and
  • . For example, Zhou et al. have used Ag-modified ZnO NP film as EIL in inverted fluorescent OLED (IFOLED) and inverted phosphorescent OLED (IPOLED) [52]. As a result, the IFOLED and IPOLED show very high current efficiencies of 8.4 and 95.3 cd/A and EQE of 4% and 21%, respectively, at a current density
  • nanocomposites [76]. They investigated Ag-doped ZnO (Ag:ZnO) and Ag:ZnO/PMMA nanocomposites for ETL applications in OLED. The pristine Ag:ZnO has an average particle size of ≈57 nm and the PMMA capping layer was ≈8 nm. Consequently, an increased rate of electron–hole recombination and an enhanced current density
PDF
Album
Review
Published 24 Sep 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • potential carriers for hydrophobic compounds like CUR, since it can increase its solubility by 1400-fold [90]. When CUR-loaded nanoemulsions were tested, results showed an antiangiogenic effect since there was inhibition of new vessel formation and reduced microvessel density in mice. Moreover, increased
PDF
Album
Review
Published 15 Sep 2021

An overview of microneedle applications, materials, and fabrication methods

  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2021, 12, 1034–1046, doi:10.3762/bjnano.12.77

Graphical Abstract
  • -opened, conical, bevelled tip, (3) material selection, (4) fabrication feasibility, (5) application, (6) layout of the arrays, (7) density, (8) total number of microneedles, and (9) surface layer state (e.g., hydrophobicity). In addition, microneedles are defined according to their array density, length
  • microneedles in high-density two-dimensional arrays, although the resulting microneedles are restricted to lower aspect ratio and shorter height compared to in-plane microneedles if traditional microfabrication methods, such as wet and dry etching, are used. Hollow microneedles contain a lumen or internal
  • in liquid form. It has so far been limited to low density arrays with relatively large spacing between adjacent microneedles (>900 μm). Faraji Rad et al. made tall polymer microneedle arrays with complex design using TPP and micromoulding [5]. Two-photon polymerization enables fabrication of almost
PDF
Album
Review
Published 13 Sep 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • direct one in the present work. In contrast, Validžić et al. performed calculations based on the density functional theory and found a direct band gap [31]. The optical data can be seen in Figure 9 and in Figure S9 in Supporting Information File 1. As the spectra of the 2 h, 5 h, and 8 h samples are
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • to the high theoretical capacities of both elements (1166 mAh·g−1 and 1675 mAh·g−1, respectively), which lead to devices with high energy density [4][10]. Additionally, sulfur cathodes exhibit other advantages such as low operating voltages (1.81 V vs Na/Na+) and improved safety and low toxicity
  • discharge process corresponds to the reactions from left to right): Considering the full reduction of sulfur to Na2S, RT Na–S batteries have a high theoretical energy density of 1276 Wh·kg−1 [4]. However, the reduction of sulfur to sodium sulfide is not a one-step process as it proceeds in a series of
  • shuttle effect is therefore diminished, which results in an improvement in cycling stability. In this way, Qiang et al. [31] reported a decay in discharge capacity of only 3% after 8000 cycles at a high current density of 4.6 A·g−1. This improvement has also been clearly shown in the electrochemical
PDF
Album
Review
Published 09 Sep 2021

A Au/CuNiCoS4/p-Si photodiode: electrical and morphological characterization

  • Adem Koçyiğit,
  • Adem Sarılmaz,
  • Teoman Öztürk,
  • Faruk Ozel and
  • Murat Yıldırım

Beilstein J. Nanotechnol. 2021, 12, 984–994, doi:10.3762/bjnano.12.74

Graphical Abstract
  • different illumination conditions. The I–V characteristics as function of the illumination power density are shown in Figure 4. The obtained photodiode exhibited normal diode characteristics and good rectifying properties. The rectifying ratio (RR) values of the photodiode changed with increasing light
  • intensity. The RR value was calculated as 53.25 in the dark, raising to 35.53 × 103 under 20 mW·cm−2 illumination power density and then decreased to 21.25 with increasing illumination power density. The sharp increase of the RR value under 20 mW·cm−2 illumination power density and the slow decrease with
  • increasing light intensity can be attributed to the increasing of the current at the interface at forward biases [20]. The RR value as function of the illumination power density is displayed in the inset of Figure 4. The fabricated Au/CuNiCoS4/p-Si photodiode exhibited almost linear growth of the current
PDF
Album
Full Research Paper
Published 02 Sep 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • are present within a volume determined by the interaction volume depth (≈25 nm) and the 100 µm2 size of the irradiated area, corresponding to ≈18% of impurity concentration. The number of copper atoms within the volume was calculated using the copper mass density of 8.93 × 103 kg/m3 and its atomic
  • , suggesting a higher number of defects and strain in those regions. A higher misorientation is represented by green areas in the KAM map. This result is in good agreement with the TEM measurements which also showed an increased defect density. The faster milling grains are indexed as the Cu phase. This was
  • calculations suggest that a concentration of ≈36% of Ga can be found within these topographically higher regions which exceeds the required concentration threshold to form the Cu3Ga phase. In addition, a higher strain and defect density can be observed here suggesting significant crystal structure alterations
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • growth rate as can be seen from the dependence of the average current density (javer) and the Cu growth rate on the deposition potential (Table 1). To determine the Cu electrodeposition conditions leading to the highest length uniformity, the first segment with much longer length than the supposed recess
  • metal for the second segment. The low concentration of Au(I) electroactive species in the electrolyte results in a low current density (javer ≈ 0.6 mA·cm−2 for Ed = −1.0 V) and a low metal growth rate of 3.5 µm·h−1. As a consequence, complete pore filling in the used AAO template requires ca. 14 h. Such
  • AAO top surface. As a consequence, a narrower Ed range from −0.3 to −0.1 V was chosen for an optimization of the electrodeposition conditions for the third segment of Cu. The current density as a function of the time, recorded at different Ed, is demonstrated in Figure 2a. At stage I, a sharp drop in
PDF
Album
Full Research Paper
Published 30 Aug 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • inertness and the low density of states near the Fermi level. However, the electronic decoupling efficiency also depends on the electronic structure of the 2D material. Sometimes, only molecular states in the bandgap of the 2D material can be decoupled. Moreover, ultrathin organic spacer layers can
  • partial exploration of the potential energy landscape due to the complexity of the system. Recently developed structure search methods that combine machine learning with density functional theory provide the possibility of reliable structure identification of non-planar molecules, as demonstrated for the
PDF
Editorial
Published 23 Aug 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • nanocrystals with high-index {771} facets. The nanoparticles with high-index planes exhibited higher catalytic activity due to high density of atoms with low coordination number compared to nanoparticles with low-index facets such as {100}, {111}, or {110}. Chirea et al. synthesized polycrystalline gold
PDF
Album
Review
Published 18 Aug 2021

In situ transport characterization of magnetic states in Nb/Co superconductor/ferromagnet heterostructures

  • Olena M. Kapran,
  • Roman Morari,
  • Taras Golod,
  • Evgenii A. Borodianskyi,
  • Vladimir Boian,
  • Andrei Prepelita,
  • Nikolay Klenov,
  • Anatoli S. Sidorenko and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 913–923, doi:10.3762/bjnano.12.68

Graphical Abstract
  • important role. Indeed, Hall effect measurements, Figure 1i, unambiguously show that the resistance in our films has a flux-flow origin. Therefore, MR is due to the modulation of FF. The latter depends on the vortex density, pinning, the superconducting order parameter, and the driving current. Next, we
  • argue that: (i) Vortices in thin films have a pancake structure (Pearl vortices) with a field perpendicular to the film. Therefore, vortex density depends on the magnetic induction Bz perpendicular to the film. Since the applied field in our experiment is parallel to the film, it does not contribute to
PDF
Album
Full Research Paper
Published 17 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • of metallic NP arrays with controllable parameters such as size, shape, interparticle distance, and ordering degree [5][6][7][8][9][10][11][12], with a focus on plasmonic structures with a high density of “hot spots”. Due to the progress in nanotechnology, a large number of highly sensitive SERS
  • surface coverage of the glass SERS substrates, we used SEM images of the PEI-modified silicon support with analogous NP treatment supposing equal packing density (Figure 3). The surface coverage degree obtained was 58%, that is, 74% of the theoretical value for spherical particles with equal sizes and
  • corresponds to the highest reported values for this method [10][12][32]. Moreover, the SEM image demonstrates many interparticle contacts, which are potential “hot spots” in SERS analysis. Electrostatic effect on SERS signal for thiol-modified Ag NPs Despite the high NP packing density, about 42% of the
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • , such as low signal-to-noise (S/N) ratio or high emitter (photon) density, leading to blurry images. The network can be trained either on experimental or on simulated images. Simulations are based on the well-understood physics of the image degradation process to generate training images. The simulated
  • was trained on simulated STEM images. Then, scanning tunneling microscopy (STM) images of the same sample were used to characterize the defects. STM images, which give the local density of states, measure not only the Si lattice, but also defect areas where this well-ordered lattice disappears. Such
  • images were compared with those computed by density functional theory (DFT) based on well-known single and dimer Si defects. The examples given here demonstrate the utility of deep learning in general and CNN in particular in the field of microscopy. In the following section, the emphasis is narrowed
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • combination with specific nanoparticles (NPs). The use of US in drug delivery has expanded greatly since the first report in 1989 [19]. Nowadays, advances made in new US-sensitive smart carriers have led US to become an effective technique to trigger drug delivery at targeted sites by tuning the power density
  • values of acoustic impedance (a parameter that mainly depends on the tissue density), a proportion of the wave energy is reflected while the remainder passes through the tissue in a process called transmission. Other consequences are the refraction and diffraction of the acoustic wave. Also, a proportion
  • ]. King investigated the primary ARF and provided a number of equations to describe this phenomenon. Different parameters are involved in these equations, including fluid density, the complex amplitude of the velocity potential of the imposed sound field, angular driving frequency, speed of sound in the
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • analysis and differential scanning calorimetry. The antimicrobial properties of the Ag-NPs were investigated against E. coli and S. aureus. The potential of the Ag-NPs for industrial application was tested by dispersing them into low-density polyethylene. The importance of the chemical affinity between
  • the potential of the Ag-NPs for industrial application by dispersing them into low-density polyethylene (LDPE) and evaluating the chemical compatibility between matrix and additive by testing a dodecanethiol (DIO) coating to improve the dispersion of the Ag-NPs into LDPE. The resulting composites were
  • then evaluated in terms of surface antimicrobial activity. Experimental Halloysite (>99%), silver nitrate (AgNO3(s), >99%), and dodecanethiol were obtained from Sigma-Aldrich; sodium hydroxide (NaOH(s), >99%) was purchased from Alpha Quimica; low-density polyethylene (LDPE) was purchased from Braskem
PDF
Album
Full Research Paper
Published 05 Aug 2021

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • expression assessment BM-MSCs were plated at a density of 2 × 106 cells/well in 6-well plates containing cardiomyocyte differentiation medium for 14 days, and were divided into three groups, as described above. At the end of the 14th day, total RNA was extracted and cDNA was synthesized from
PDF
Album
Full Research Paper
Published 02 Aug 2021

Reducing molecular simulation time for AFM images based on super-resolution methods

  • Zhipeng Dou,
  • Jianqiang Qian,
  • Yingzi Li,
  • Rui Lin,
  • Jianhai Wang,
  • Peng Cheng and
  • Zeyu Xu

Beilstein J. Nanotechnol. 2021, 12, 775–785, doi:10.3762/bjnano.12.61

Graphical Abstract
  • reconstruction algorithms are important for CS algorithms. We set the measurement matrix to a random matrix for an idealized CS application and a fast reconstruction algorithm based on BCS is used to reconstruct the images. Since the measurement is random, the conditional probability density function of the
PDF
Album
Full Research Paper
Published 29 Jul 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • mol solution of sodium hydroxide (CAS Number 1310-73-2). The hydrothermal processes of ZnONR were carried out at 70 °C for 4 min (at a microwave power level of 500 W). Monocrystalline ZnONR were grown with controlled height, width, and density. Detailed information on the HT growth is available
PDF
Album
Full Research Paper
Published 21 Jul 2021
Other Beilstein-Institut Open Science Activities