Search results

Search for "dimers" in Full Text gives 80 result(s) in Beilstein Journal of Nanotechnology.

Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe

  • Adam Sweetman,
  • Sam Jarvis,
  • Rosanna Danza and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2012, 3, 25–32, doi:10.3762/bjnano.3.3

Graphical Abstract
  • excitation of silicon dimers, which is a key issue in scanning probe studies of Si(100). Conclusion: A wide range of novel imaging mechanisms are demonstrated on the Si(100) surface, which can only be explained by variations in the precise structural configuration at the apex of the tip. Such images provide
  • ], and hence significantly complicate the interpretation of the acquired images. The silicon atoms terminating the Si(100) surface pair up into dimers in order to reduce the number of dangling bonds, and subsequently buckle, forming rows of alternately buckled dimers along the surface (Figure 1j). It has
  • been shown that the structure of the rows may be locally manipulated by controlled tunnel-current injection [18], and we recently demonstrated that the buckling of the dimers can be toggled with atomic precision by direct application of mechanical force during NC-AFM [19][20]. In this paper we present
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2012

Current-induced dynamics in carbon atomic contacts

  • Jing-Tao Lü,
  • Tue Gunst,
  • Per Hedegård and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2011, 2, 814–823, doi:10.3762/bjnano.2.90

Graphical Abstract
  • current, allowing the dynamics to be followed down to single adatoms [13]. Electric current has been used to induce changes in graphene-edges, which were monitored while a current was simultaneously passed through the structure [14]. This was explained as carbon edge-dimers desorbing due to Joule-heating
PDF
Album
Adds. & Corrs.
Full Research Paper
Published 16 Dec 2011

Optical properties of fully conjugated cyclo[n]thiophenes – An experimental and theoretical approach

  • Elena Mena-Osteritz,
  • Fan Zhang,
  • Günther Götz,
  • Peter Reineker and
  • Peter Bäuerle

Beilstein J. Nanotechnol. 2011, 2, 720–726, doi:10.3762/bjnano.2.78

Graphical Abstract
  • explained by the tendency of C10T to form dimers (excimers) in the excited state [29], which emit at lower energies with respect to the monomers (1.81 eV versus 2.18 eV). For the smallest cycle, C8T, we observe a weak structured emission band at much higher energy than the S0 ← S1 transition, whose origin
PDF
Album
Full Research Paper
Published 25 Oct 2011

Self-organizing bioinspired oligothiophene–oligopeptide hybrids

  • Alexey K. Shaytan,
  • Eva-Kathrin Schillinger,
  • Elena Mena-Osteritz,
  • Sylvia Schmid,
  • Pavel G. Khalatur,
  • Peter Bäuerle and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2011, 2, 525–544, doi:10.3762/bjnano.2.57

Graphical Abstract
  • model of 1' (yellow box: Quaterthiophene backbone; green arrow: Peptide segment; blue coils: PEO chains). When forming dimers from molecules of 6' (kinked state), such as depicted in Figure 7b and c, an analog of hybrid 1' (referring to the arrangement of the peptide arms with respect to the conjugated
  • backbones) is obtained. Thus, such dimers should mimic the single molecules of the corresponding disubstituted hybrid 1' with respect to the formation of inherently left-handed helical fibers (Figure 8, bottom panel). The driving forces for the formation of such proposed dimers could be the compensation of
  • dipole moments of the single molecules in addition to a favorable intermolecular interaction of hydrophilic (peptide–PEO) and hydrophobic (quaterthiophene) parts of the molecules. Furthermore, the model revealed a separation of 8 Å between the quaterthiophene backbones of two adjacent dimers of 6', due
PDF
Album
Review
Published 05 Sep 2011

Septipyridines as conformationally controlled substitutes for inaccessible bis(terpyridine)-derived oligopyridines in two-dimensional self-assembly

  • Daniel Caterbow,
  • Daniela Künzel,
  • Michael G. Mavros,
  • Axel Groß,
  • Katharina Landfester and
  • Ulrich Ziener

Beilstein J. Nanotechnol. 2011, 2, 405–415, doi:10.3762/bjnano.2.46

Graphical Abstract
  • peripheral 3-pyridyl units point with both N-atoms in the opposite direction at the expense of attracting C–H…N interactions and forming a repulsive N...N interaction. An estimation of the interactions based on C–H…N double bond and single bond dimers [7] yields −36.5 kJ mol−1 for the conformation shown in
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2011
Other Beilstein-Institut Open Science Activities