Search results

Search for "dissolution" in Full Text gives 259 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • and then to the in vitro Franz diffusion test with reservoir patch formulation as well as in vivo pharmacokinetics study with enteric capsules. We tested these formulations regarding their nanocrystal physical properties, size effect, and dissolution rate, respectively. We found that DCS nanocrystals
  • showed good performance in the Franz diffusion test and rodent pharmacokinetic studies due to the nanoparticle size and faster dissolution as compared with the commercial DCS powder. These DCS nanocrystal formulations could offer a new approach for the development of an advanced drug delivery system for
  • ]. Nanocrystals can improve many physicochemical properties of drugs such as solubility, size effect, dissolution rate, and adhesiveness to surface membranes [23]. The limitations of conventional medication delivery can be overcome by advanced drug delivery methodologies, such as transdermal drug delivery (TDD
PDF
Album
Full Research Paper
Published 25 Apr 2024

Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 385–395, doi:10.3762/bjnano.15.35

Graphical Abstract
  • of insect adhesive pads by plant wax during the contact (contamination hypothesis), (3) absorption of the insect pad secretion by the wax coverage (fluid absorption hypothesis), (4) hydroplaning induced by dissolution of the wax in the pad fluid (wax dissolution hypothesis), and (5) detached wax
PDF
Album
Full Research Paper
Published 11 Apr 2024

Nanomedicines against Chagas disease: a critical review

  • Maria Jose Morilla,
  • Kajal Ghosal and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 333–349, doi:10.3762/bjnano.15.30

Graphical Abstract
  • , according to the Biopharmaceutical Classification System (BCS) [31], which means that it is a poorly soluble but permeable molecule. The limitation in the absorption of class-II drugs is due to their rate of dissolution, except at very high doses. Their bioavailability is variable but can be increased by
  • augmenting their dissolution rate, and in vitro–in vivo correlation is normally applied [31]. These drugs are suitable for sustained release and controlled release formulations that provide more stable and predictable plasma levels. Drug solubility can be increased by employing strategies from classical
  • -II drugs with low solubility, or low or irregular bioavailability, and promoting adhesion to the gastrointestinal wall [95]. The small size of the crystals is associated with a large surface area, which increases interactions with the dissolving medium and accelerates the dissolution rate. The latest
PDF
Album
Review
Published 27 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • taken. The concentration of the drug release was calculated using Equation 2 [42] with the calibration curve for VNB. In the in vitro dissolution test, the drug release (DR) was determined using Equation 3. The cumulative percentage of drug release (CPR %) was determined using Equation 4 [42] separately
PDF
Album
Full Research Paper
Published 28 Feb 2024

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • , there was probably less chance of intake of intact ZnO NPs than that of Zn2+ by R. sativus. Further, upon application or release into the environment, ZnO NPs undergo rapid dissolution and conversion while some NPs attach to the crop root surface [52]. The ability of ZnO NPs to adhere to the root
PDF
Album
Full Research Paper
Published 23 Jan 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • a transport exponent value (n) of 0.3, indicating a release mechanism primarily driven by Fickian diffusion [44]. The free terpenes exhibited a value of 0.6, suggesting an anomalous transport mechanism for drug release. This mechanism involves a combination of diffusion and dissolution processes for
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • ]. The core/shell nanofiber structure can also prolong the drug release since the polymer shell plays a role as a rate-control barrier [15]. On the other hand, the nanofiber scaffolds fabricated using suitable hydrophilic or water-soluble polymers are used to improve the dissolution profile and
  • value of n determined by the Ritger–Peppas model was in the range of 0.5 and 1.0, which means that the BBR NPs release mechanism could be represented by a non-Fickian diffusion. In other words, the release of BBR NPs was not only based on diffusion but also involved other processes, such as dissolution
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • used in the future [8]. In another work, Gonzalez et al. [48] increased the dissolution of PZQ by producing nanocrystals through high-pressure homogenization, followed by drying through spray-drying. After that, they resuspended the powder in Oral plus® and Oral Sweet®, which are suspension vehicles
  • use known drugs which have its effectivity attested, and aim to increase the dissolution of the drug in vitro [48][94]. Yang et al. [94] verified that PZQ nanocrystals had a more significant dissolution rate than that of the conventional drug due to the particle size and, consequently, it also showed
  • a bioavailability improvement. That is because bioavailability of orally administered drugs depends on their ability to be absorbed in the gastrointestinal tract. For class II drugs (e.g., PZQ) the absorption process is limited by drug dissolution rate in gastrointestinal media. Therefore
PDF
Album
Supp Info
Review
Published 03 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • and the relatively long baking duration were chosen because the copolymer must be solid to prevent dissolution by the PMMA layer. In addition, the baking temperature can control the sensitivity of the copolymer. The higher the baking temperature of the copolymer, the more sensitive the copolymer gets
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • = 18.2 MΩ·cm; Millipore® Reverse Osmosis system; Merck, Darmstadt, Germany). BSA/polydopamine nanoparticles Polydopamine nanoparticles (BSA/PDA NPs) were prepared according to Bergtold and co-workers [13] (Figure 2a–c). Tris buffer solution was prepared by dissolution of 6.055 g (5 × 10−2 mol) of Tris
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • poorly water-soluble CUR. An effective submicron particle fabrication technique, namely co-precipitation–cross-linking–dissolution (CCD), has been established to produce biopolymer particles [24][25][26]. In this method, biopolymer particles are produced via co-precipitation, by simply mixing MnCl2 and
  • -HSA-MPs and HSA was cross-linked. After dissolution of the MnCO3 template with EDTA, a colloidal particle suspension of CUR-HSA-MPs was obtained. Comparison of the different CUR samples demonstrated that the color of CUR in DMSO is light brown, indicating dissolved CUR; CUR in water is bright yellow
  • albumin proteins [30]. CUR showed strong binding affinity towards HSA, likely at the tryptophan residue, which is present in the hydrophobic cavities of HSA [23][31]. The final CUR-HSA-MPs are obtained after dissolution of the MnCO3 template with EDTA. Characterization of CUR-HSA-MPs Dynamic light
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • coprecipitation–crosslinking–dissolution (CCD) are promising as HBOCs. CCD provides particles that are malleable and show a consistent morphology and narrow size distribution, as well as a negative zeta potential [19][31][32][33]. It could be shown that neither NO scavenging nor vasoconstriction can be detected
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • dissolution of gold. We present scanning electron micrographs and elemental imaging analyses by energy dispersive X-ray spectroscopy to examine the effect of solutions of each species on the gold film. This work highlights the risk of unwanted etching during some routes to NHC-based surface functionalization
  • solubility) of 2 and 3 must also be considered as a contributing factor. Similarly, Figure S4 (Supporting Information File 1) shows no apparent gold film loss in a solution of triethylamine and potassium iodide in acetone (chosen instead of THF or DCM to allow for dissolution of KI) tested as a control for
  • the present work we show that one must carefully consider the particular NHC-related species, the solvent, the exposure time, and the concentration in order to avoid deleterious effects such as dissolution of the gold film or nanoparticle substrate. At the same time, we introduce a molecular etchant
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • BNZ within NLC because of its small quantity or to dissolution inside the NLC. The long period Bragg diffraction peaks for Myristyl myristate could be observed in SAXS patterns at the q range between 0.15 and 0.2 Å−1 (Figure 6). Bare myristyl myristate confirmed the presence of a β’ polymorph with
  • at 324 nm. The volume of injection was 20 μL. In vitro benznidazole release assay The release of BNZ from the nanoparticles was performed in a rotating paddle apparatus (Vision Classic 6, Hanson Research, Chatsworth, CA, USA) at 75 rpm using 500 mL of KH2PO4 buffer (pH 6.8) as the dissolution medium
  • . The bath temperature was set at 37.0 ± 0.5 °C. A volume of 5 mL of each formulation was placed in a pre-hydrated dialysis membrane (MWCO 10 kDa) and submerged into the dissolution vessels. A solution of free BNZ at the same concentration was used as control. At 0, 5, 10, 15, and 30 min, and at 1, 2, 3
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • of nanoceria (i.e., cerium oxide in the form of nanoparticles) can store or release oxygen, cycling between Ce3+ and Ce4+; therefore, they can cause or relieve oxidative stress within living systems. Nanoceria dissolution occurs in acidic environments. Nanoceria stabilization is a known problem even
  • dissolution and stabilization have been previously studied in vitro using acidic aqueous environments. Nanoceria agglomerated in the presence of some carboxylic acids over 30 weeks, and degraded in others, at pH 4.5 (i.e., the pH value in phagolysosomes). Plants release carboxylic acids, and cerium
  • did not occur in the dark in the presence of most carboxylic acids. Light initiates free radicals generated by ceria nanoparticles. Nanoceria completely dissolved in the presence of citric, malic, and isocitric acid when exposed to light, attributed to nanoceria dissolution, release of Ce3+ ions, and
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
PDF
Album
Review
Published 01 Jun 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • friendly nature [11]. Even though transition-metal-based catalysts still suffer from low surface areas [12], dissolution and aggregation of metallic phase and metal oxides during the active OER process occurs [13]. Hence, Ni-, Fe- and/or Co-based catalysts have been synthesized as hybrid catalysts with
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • biggest problems in the development of new drugs [3]. One of the approaches to overcome these problems is nanoparticle carriers. These carriers are advantageous because their high surface area and good adhesion to biological surfaces increase solubility and dissolution rate [4]. The Gram-positive
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • nanomedicine has yielded several relevant advancements since its beginnings in the early 2000s. The dissolution kinetics of poorly soluble drugs have been improved by the production of drug nanocrystals, enabling continuous drug release. Lipid molecular structures have been manipulated at the nanoscale to
PDF
Album
Review
Published 13 Mar 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • enhances the hydrophobic interactions of the poly(N-isopropylacrylamide) segments, stabilizing the hydrogel. The anticancer drug DOX encapsulated in the hydrophobic core is slowly released through the dissolution of the hydrogel to micelles. By modifying β-CyD with both N-acetyl-ʟ-cysteine and arginine
PDF
Album
Review
Published 09 Feb 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • (PEG600DA) and pentaerythritol triacrylate monomer (PETIA) used as comonomer (PEG600DA/PETIA with a 1:1 weight ratio) were mixed under magnetic stirring with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (0.5 wt %) and the metal precursor AgNO3 (3 wt % and 5 wt %) for 1 h. After complete dissolution, this
PDF
Album
Full Research Paper
Published 12 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • , 9, and 14 iterative silica growth steps, with measured diameter of the silica cap of 130, 165, 195, 250, and 315 nm, respectively. The selective dissolution of the physically entangled PS chains by three centrifugation/redispersion cycles in 20 mL of THF was thus performed to get the 1-PSN with
  • next generation. The final diameter of the silica core of the bipods was 190 nm. Dissolution of the PS nodules For dissolving the PS nodules of the monopods and bipods, three centrifugation/redispersion cycles in 20 mL of THF (12,000g; 10 min) were performed. The concentration of 1-PSN and 2-PSN
PDF
Album
Full Research Paper
Published 06 Jan 2023

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • amount of solvent until complete dissolution, then the solvent was added in the required amount, and the solution was kept for another day in the dark. For fabrication of films of various thicknesses, solutions of polymers in cyclohexanone with concentrations of 0.1–15 wt % were used. The polymer
PDF
Album
Full Research Paper
Published 19 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , which exhibits a strong correlation with porosity, as well as on the mineralization capability and cell viability due to the different dissolution rate. Keywords: bioactivity; hardness; microstructure; nanocomposites; porosity; Introduction Within the last decades increasing emphasis is placed on the
  • bioactivity of the glass, which has a higher dissolution rate and promotes the formation of a carbonated hydroxyapatite (CHA) layer on its surface, which is responsible for implant–bone bonding [6]. The composition of the most famous bioglass, 45S5 Bioglass [7], includes the principal elements of the bone, Ca
  • , therefore, higher dissolution rate. HAP-based composites with a denser structure need a longer period of immersion in SBF for solubilization and the beginning of the mineralization process. And indeed, after 5 days of soaking, a well-pronounced precipitate was observed on HAP-based composites, too (Figure
PDF
Full Research Paper
Published 12 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • by the phase transition from a hexagonal structure to a monoclinic structure, which occurs during cathode charging at a potential of approximately 4.2 V [5][6][7][8][9]. A decrease in capacity (approx. 50%) is observed during the cycling charging–discharging processes, caused by the dissolution of
PDF
Album
Full Research Paper
Published 07 Dec 2022
Other Beilstein-Institut Open Science Activities