Search results

Search for "energy efficiency" in Full Text gives 28 result(s) in Beilstein Journal of Nanotechnology.

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Challenges in realizing ultraflat materials surfaces

  • Takashi Yatsui,
  • Wataru Nomura,
  • Fabrice Stehlin,
  • Olivier Soppera,
  • Makoto Naruse and
  • Motoichi Ohtsu

Beilstein J. Nanotechnol. 2013, 4, 875–885, doi:10.3762/bjnano.4.99

Graphical Abstract
  • Figure 4g). Acknowledgements This research was supported in part by the New Energy and Industrial Technology Development Organization (NEDO) under the Research and Development Program of Innovative Energy Efficiency Technology, under the program of Strategic Development on Rationalization Technology
PDF
Album
Review
Published 11 Dec 2013

A nano-graphite cold cathode for an energy-efficient cathodoluminescent light source

  • Alexander N. Obraztsov,
  • Victor I. Kleshch and
  • Elena A. Smolnikova

Beilstein J. Nanotechnol. 2013, 4, 493–500, doi:10.3762/bjnano.4.58

Graphical Abstract
  • sources is necessary to provide better energy efficiency, spectral characteristics, and other properties desired by the consumer. The process of cathodoluminescence (CL), which is potentially able to provide a conversion of up to 35% [3] (or more for nanostructured phosphors [4]) of the energy of the
  • and the CL layer reduces the loss of electron energy and, thus, increases the overall energy efficiency of the lamp. The light generated in the CL phosphor radiates directly from the lamp through the transparent glass surface. An example of such a kind of lamp is presented by the photograph in Figure
  • CdS:CuAl for green, Y2O2S:Eu for red, and ZnS:Ag for blue. Measured emission spectra and color coordinates (marked by white circle) for each segment are shown in Figure 7. With a total power consumption of about 2 W per segment, light intensities correspond to an energy efficiency of about 10% for green
PDF
Album
Full Research Paper
Published 28 Aug 2013
Other Beilstein-Institut Open Science Activities