Search results

Search for "force sensing" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

Low-temperature AFM with a microwave cavity optomechanical transducer

  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • August K. Roos,
  • Erik Holmgren,
  • Riccardo Borgani,
  • Mats O. Tholén and
  • David B. Haviland

Beilstein J. Nanotechnol. 2025, 16, 1873–1882, doi:10.3762/bjnano.16.130

Graphical Abstract
  • fulfills the specific requirements of the application. The latter is indeed the case for force sensing in atomic force microscopy (AFM). Force transduction at maximum sensitivity requires detecting the position of a “test mass”, while minimizing the added noise introduced by the detection itself [14][15
PDF
Album
Full Research Paper
Published 24 Oct 2025

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • -induced deposition of platinum. Finally, we present measurements that characterize the spread of mechanical resonant frequency, the temperature dependence of the microwave resonance, and the sensor’s operation as an electromechanical transducer of force. Keywords: atomic force microscopy; force sensing
PDF
Album
Full Research Paper
Published 15 Feb 2024
Other Beilstein-Institut Open Science Activities