Search results

Search for "glioma" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • and migration of C6 glioma cells in vitro [12]. Other nanoparticles that are being explored as CUR formulations for various applications include silk-based nanoparticles. These are an excellent candidate with longer plasma half-life and slower release rate, indicating high bioavailability [13]. The
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • sample was recorded at 762 nm. During the measurements, distilled water was used as a reference. Cell culture Human brain glioma (U-118 MG) and human retinal pigment epithelium (ARPE-19) cell lines were purchased from ATCC (NY, USA) and cultured in 10% (v/v) FBS (Gibco; Thermo Scientific, USA) and 1% (v
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • extracellular glutamate concentrations in glioma cell lines in vitro was shown to be up to 500 µM, and glutamate stimulates glioma cell proliferation in vivo. Also, glial tumor cells ex vivo generate neurotoxic quantities of glutamate [3][4][5][6]. Excessive extracellular glutamate concentrations of 100 μM were
  • the nanoparticles [26]. Abakumov et al. revealed that nanoparticles coated with bovine serum albumin can be used for glioma visualization and drug delivery of anticancer therapeutics [34]. Analysis of the biocoating formation at the surface of nanoparticles is crucial for understanding the mechanisms
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • nanoparticles colocalized to the Golgi apparatus and lysosomes than C6 cells (rat glioma cell line), suggesting that intracellular vesicles could avoid lysosomes in brain endothelial cells [43][44]. Finally, the exocytosis process has not been described very well. It is still unclear if the tubules and multi
  • brain delivery such as polycaprolactone (PCL) [68] or chitosan [80][82] but to a lesser extent than PBCA and PLA/PLGA nanoparticles. For instance, enhanced accumulation in an in vivo intracranial glioma mice model of PEG-PCL nanoparticles functionalized with angiopep-2 could be observed by real-time
  • fluorescence imaging [68]. Nanoparticles could be observed in the glioma bed and infiltrating margin, showing that nanoparticles functionalized with angiopep-2 could exhibit dual-targeting abilities. Firstly, angiopep-2 allowed the nanoparticles to cross the BBB through RMT by recognition of LRP1 on the BBB
PDF
Album
Review
Published 04 Jun 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells

  • Mohammad J. Akbar,
  • Pâmela C. Lukasewicz Ferreira,
  • Melania Giorgetti,
  • Leanne Stokes and
  • Christopher J. Morris

Beilstein J. Nanotechnol. 2019, 10, 2553–2562, doi:10.3762/bjnano.10.246

Graphical Abstract
  • ] and imaging of breast [8], pancreatic [9] and glioma [10] tumours. The use of GRPR antagonists is motivated by their inability to cause downstream cell growth effects, but is counter-balanced by a greatly reduced rate of receptor internalisation. Nonetheless, a number of reports have illustrated that
PDF
Album
Full Research Paper
Published 19 Dec 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • filtrate became colorless. The solution of HSA-coated MNPs was sterilized through 0.22 μm sterile filters, lyophylized and stored under room temperature [29]. The applicability of these nanoparticles as a contrast agent in MRI was previously demonstrated on the experimental rat C6 glioma model [7
PDF
Album
Full Research Paper
Published 02 Oct 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • characterization. Precise tumor resection is critical for affected patients and allows for better prognosis due to the infiltrative and heterogeneous characterization of glioma [1]. Glioma originates from glial cells and is a malignant tumor of the brain that exhibits hypervascularity, especially the grade IV
  • radical surgery [36]. In addition, Mao and co-workers have reported the multitargeted drug delivery system by a d-peptide ligand (d-AE) based EGFRvIII targeting strategy, which provides a promising path for glioma therapy [37]. Through the conjugation of Cy7.5 to PEPHC1-modified PEGylated SPIONs, a
PDF
Album
Full Research Paper
Published 11 Sep 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • magnetically separated. Particle uptake by cultured cells. L-929 (human fibroblast cells) and LN-229 (human glioma cells) cells were supplied by the Food Industry Research and Development Institute (Hsinchu, Taiwan). L-929 cells were cultured in minimum essential medium Eagle supplemented with 10% equine serum
PDF
Album
Full Research Paper
Published 20 May 2019

Targeting strategies for improving the efficacy of nanomedicine in oncology

  • Gonzalo Villaverde and
  • Alejandro Baeza

Beilstein J. Nanotechnol. 2019, 10, 168–181, doi:10.3762/bjnano.10.16

Graphical Abstract
  • lipoprotein receptor (LPR) typically overexpressed in glioma and in BBB cells [62] and therefore, it shows excellent capabilities for the penetration into the brain through the transcytosis pathway. The peptide tLyP-1 also exhibits both tissue penetration ability through the neurophilin-1-dependent C-end rule
  • and affinity to glioma cells for LPR interaction. The exposed dual peptide cation enables the possible accumulation into gliomas via the combination of EPR effect and active targeting for an antiangiogenic and apoptotic treatment. In vitro assays showed improved internalization only when the liposomes
  • have both targeting systems exposed, demonstrating the synergy of the two peptides in the assisted internalization (Figure 3). In vivo experiments showed an amazing reduction in subcutaneous induced glioma tumours in mice by intratumoral but also by systemic administration. This example represents the
PDF
Album
Review
Published 14 Jan 2019

Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

  • Liga Saulite,
  • Karlis Pleiko,
  • Ineta Popena,
  • Dominyka Dapkute,
  • Ricardas Rotomskis and
  • Una Riekstina

Beilstein J. Nanotechnol. 2018, 9, 321–332, doi:10.3762/bjnano.9.32

Graphical Abstract
  • to U251 glioma cells and induce cancer cell apoptosis [9]. Moreover, MSCs carrying poly(lactic-co-glycolic acid) (PLGA) NPs linked with paclitaxel selectively accumulate in an orthotopic A549 lung tumour model [2]. It has been reported that IFN-beta secreting MSCs could integrate into A375SM melanoma
PDF
Album
Supp Info
Full Research Paper
Published 29 Jan 2018

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • at the tumor site following surgical operation for brain glioma treatment. To obtain positively charged, implantable nanoparticles, the effects of preparation technique, chitosan coating concentration and presence of surfactants were evaluated to obtain optimal nanoparticles with a diameter of less
  • suggested to result in a more effective brain tumor treatment when compared to chemotherapeutics administered as an intravenous bolus infusion. Keywords: bioadhesive film; cationic nanoparticle; core–shell nanoparticle; docetaxel; glioma; Introduction A brain tumor is known as an abnormal growth of
  • –shell PCL nanoparticles to tumor targeting with docetaxel on a glioma model is very rare. Recently, active-targeted docetaxel-loaded PEG/PCL nanoparticles were prepared successfully for glioblastoma therapy by Gao et al. Cellular uptake and tumor spheroid uptake studies on U87 human glioma cells show
PDF
Album
Full Research Paper
Published 12 Jul 2017

Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods

  • Ana I. Ramos,
  • Pedro D. Vaz,
  • Susana S. Braga and
  • Artur M. S. Silva

Beilstein J. Nanotechnol. 2017, 8, 348–357, doi:10.3762/bjnano.8.37

Graphical Abstract
  • ]. In vitro incubation with cells of the C6 (glioma) and A549 (lung adenocarcinoma) tumoural lines showed that aescin has potent dose- and time-dependent antiproliferative effects [8]. Studies with human castration-resistant prostate cancer, both in vitro, using the cell lines PC-3 and DU-145, and in
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2017

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • affected by DNA methylation. DNA methylation was associated with expression of neurotransmitters. In an in vitro study, hypermethylation of the excitatory amino acid transporter (EAAT2) promoter in glioma cells led to a deficiency in astroglial EAAT2 expression, which was related to the pathogenesis of CNS
PDF
Review
Published 29 Apr 2016

Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells

  • Nils Bohmer and
  • Andreas Jordan

Beilstein J. Nanotechnol. 2015, 6, 167–176, doi:10.3762/bjnano.6.16

Graphical Abstract
  • appear in vesicular structures within the cytosol of cells in vitro [19][20][21][22][23][24], which indicates an active, energy dependent uptake via endocytosis. In a post mortem study of glioma patients, who had received thermotherapy with aminosilane coated iron oxide nanoparticles in a phase-II study
PDF
Album
Full Research Paper
Published 14 Jan 2015
Other Beilstein-Institut Open Science Activities