Search results

Search for "hydrogen" in Full Text gives 717 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Impact of GaAs(100) surface preparation on EQE of AZO/Al2O3/p-GaAs photovoltaic structures

  • Piotr Caban,
  • Rafał Pietruszka,
  • Jarosław Kaszewski,
  • Monika Ożga,
  • Bartłomiej S. Witkowski,
  • Krzysztof Kopalko,
  • Piotr Kuźmiuk,
  • Katarzyna Gwóźdź,
  • Ewa Płaczek-Popko,
  • Krystyna Lawniczak-Jablonska and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 578–592, doi:10.3762/bjnano.12.48

Graphical Abstract
  • aqueous solutions are used with the addition of an oxidizer – usually hydrogen peroxide (H2O2). Such an etchant is able to turn GaAs into oxide and dissolve the created oxides “at the same time”. The popular etchants are H2SO4/H2O2/H2O, NH4OH/H2O2/H2O, and citric acid (CA)-based etchants – CA/H2O2/H2O [17
  • minutes raised it to room temperature (RT). Just before the etching process, the dissolved CA in DIW was mixed (1:1, v:v) with hydrogen peroxide (30%). The solution temperature was set to 24 °C and kept at this value during the etching process for 2 min in a USC. The etching rate of such a solution, with
PDF
Album
Full Research Paper
Published 28 Jun 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • and hydrogen dopants in the pyridinic position result in n-type doping [48]. Thus, defect origin and density impact graphene strain and carrier concentration as well as the interaction with the substrate. The G band is generated by the scattering on iTO or iLO phonons near the Γ point of the Brillouin
PDF
Album
Full Research Paper
Published 22 Jun 2021

The preparation temperature influences the physicochemical nature and activity of nanoceria

  • Robert A. Yokel,
  • Wendel Wohlleben,
  • Johannes Georg Keller,
  • Matthew L. Hancock,
  • Jason M. Unrine,
  • D. Allan Butterfield and
  • Eric A. Grulke

Beilstein J. Nanotechnol. 2021, 12, 525–540, doi:10.3762/bjnano.12.43

Graphical Abstract
  • +, consistent with the interpretation that nanoceria dissolution occurs at the solid–liquid interface [14]. Cerium ions may then complex with phosphate. Nanoceria dissolution is pH-dependent ([14][39][70] and Figure 11). Nanoceria dissolution presumably results from an interaction between the hydrogen ion and
  • the nanoceria surface. A hypothesis is that hydrogen “steals” oxygen from the Ce3+ of the surface Ce–O complex, enabling Ce3+ release. This would be consistent with increased dissolution as the pH value decreases, surface Ce3+ increases, and size decreases (and surface Ce3+ increases). Also, there is
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • of water molecules) and models of water as a mixture of discrete species (water clusters) [5][6][7][8]. It is difficult to choose between them because the spatial network of hydrogen bonds has features of both continuous and discrete models. The broad Raman band of water located in the range of 3000
  • usually assigned to strongly hydrogen-bonded water molecules, or the so-called locally structured water, while the band at 3400 cm−1 is attributed to loosely bonded water molecules. Most of the authors distinguish three [15][16] or four [13] components of the band in the OH stretching vibration region
  • . Irrespective of how the spectra are deconvoluted, all models of liquid water agree that the lower the frequency of the band, the stronger the hydrogen bonds and water structuration. The interactions with various solutes [17][18] and the influence of the temperature [13] on the water structure can be analysed
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • the hydrogen evolution reaction. The following aspects were found to enhance the photocatalytic efficiency of Cl-PCN: (i) unique location of Cl atoms at the interlayers of PCN instead of on its π-conjugated planes, (ii) slight bandgap narrowing, (iii) lower recombination rate of the electron–hole
  • pairs, (iv) improved photogenerated charge transport and separation, and (v) higher reducing ability of the photogenerated electrons. The above factors affected the 4.4-fold enhancement of the photocatalytic efficiency in hydrogen evolution in comparison to the pristine catalyst. Keywords: chlorine
  • ; doping; hydrogen evolution reaction; photocatalysis; polymeric carbon nitride; Introduction Currently, the biggest problems of civilization seem to be the global energy crisis and environmental pollution. Both of these problems are directly related to each other. The pollution of our planet is mainly
PDF
Album
Full Research Paper
Published 19 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • from the damaged respiratory chain since they depend on thiol groups which are occupied by silver ions. The increase in superoxide and hydrogen peroxide anions in the reaction with iron (Fenton reaction), according to Equation 2 [104] and as described in Figure 6, are indicative of the deleterious
PDF
Album
Supp Info
Review
Published 14 May 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • nanoparticles loaded with graphene have an enhanced acetone response at 350 °C with increased graphene loading level (best at 5 wt % graphene) [40]. ZnO nanostructures doped with nickel and rGO were used for hydrogen sensing at 100 °C [34]. The decoration of MOS with a noble metal, such as Pd or Pt, improves
  • the sensitivity, response time and working temperature of MOS/rGO systems [15][41]. TiO2/rGO decorated with Pd and Pt nanoparticles was successfully used in the gas sensing of hydrogen gas [19]. The decoration of WO3/rGO nanosheets with Pt nanoparticles yielded a faster response for acetone at 200 °C
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • -related side effects in cancer management. Experimental Materials CTAB (99.9%), hydrogen tetrachloroaurate(III) trihydrate (HAuCl4·3H2O 99%), ʟ-ascorbic acid (C6H8O6, 99%), sodium borohydride (NaBH4, 98%), silver nitrate (AgNO3, 99%), doxorubicin, (98%) poly(sodium 4-styrenesulfonate) (PSS; Mw = 70,000
PDF
Album
Full Research Paper
Published 31 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • the passivation of semiconducting materials, which removes surface dangling bonds and significantly reduces surface reactivity, may also provide a sufficiently insulating layer for an efficient decoupling of molecular structures from the substrate influence. Among such surfaces, hydrogen-passivated Si
  • FePc molecules deposited at room temperature on Si(111):H serve as sources of single Fe atoms and undergo de-metalation [29]. Importantly, hydrogen-passivated Si/Ge surfaces may also act as platforms for nanostructurization by the atomically precise desorption of individual hydrogen atoms and the
  • surfaces, since those semiconductors are at the foundations of traditional electronics. Finally, hydrogen-passivated semiconductors may also provide sufficient isolation for organic molecules to allow for the growth of molecular crystals. It has been already shown that PTCDA molecules form ordered islands
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

Toward graphene textiles in wearable eye tracking systems for human–machine interaction

  • Ata Jedari Golparvar and
  • Murat Kaya Yapici

Beilstein J. Nanotechnol. 2021, 12, 180–189, doi:10.3762/bjnano.12.14

Graphical Abstract
  • , cotton, and Kevlar (Figure 1a). The textiles were first dipped into graphene oxide (GO) suspension prepared by the modified Hummer’s method, dried to allow for the layering of GO on the textiles, treated by reducing agents (e.g., hydrazine or hydrogen iodide), and rinsed with distilled water to form a
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2021

Paper-based triboelectric nanogenerators and their applications: a review

  • Jing Han,
  • Nuo Xu,
  • Yuchen Liang,
  • Mei Ding,
  • Junyi Zhai,
  • Qijun Sun and
  • Zhong Lin Wang

Beilstein J. Nanotechnol. 2021, 12, 151–171, doi:10.3762/bjnano.12.12

Graphical Abstract
  • decreases in a low RH condition. As the RH increases, the hydroxy groups of the first physisorbed layer bond to water molecules, through hydrogen bonding, which also permeate into the interlayers of GO. The gradually absorbed water layer creates a uniform barrier layer for the induction of positive charges
PDF
Album
Review
Published 01 Feb 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • of the bands due to hydrogen bonding is possible, it is very unlikely that a shift of ±10–30 cm−1 in the absorption band has a measurable effect on the attractive forces. We hypothesize that the density of the bonds/dipoles decreases, leading to a decrease in both signals, IR amplitude, and Fattr
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • . synthesized large-scale 2D Mo2CTx from Mo2Ga2C powder by etching gallium (Ga) selectively with the aid of two etchants, hydrogen fluoride (HF) and lithium fluoride (LiF)/HCl, with subsequent delamination. The morphology of the developed flakes differed with the used etchant. After using LiF/HCl as etchant
PDF
Album
Review
Published 13 Jan 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • second precursor line, 500 sccm of Ar were used. Next, while the same ferrocene and toluene mixture was injected into the furnace, ammonia (≥99.98%, BOC) was added to the carrier gas at 30 sccm for 15 min. Finally, acetylene (industrial grade, BOC) was used as a gas precursor at 100 sccm with hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • reactions, methane reforming, and hydrogen evolution [35][36][37][38][39][40]. Wang et al. [38] reported the growth of nickel phyllosilicate by simultaneous reaction of a silica precursor (tetraethylorthosilicate), nickel chloride, water, and urea in a hydrothermal reactor at 210 °C for 12 h. They obtained
  • NiPS with a sheet-like morphology, which was then used as a catalyst for the hydrogenation of styrene. More recently, Ghiat et al. [39] reported on the photocatalytic properties of nickel phyllosilicates for hydrogen production. Their nickel phyllosilicate, displaying a surface area of 95 m2·g−1, was
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • radicals (•O2−) and hydrogen peroxide (H2O2), while the photogenerated electron hole h+ reacts with H2O to form hydroxyl radicals (•OH). The latter species can additionally be formed by disproportionation of •O2− radicals and a subsequent chain reaction. It has been reported previously that hydroxyl
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • , 314001, China Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China Hydrogen Energy and Sonochemistry Research Group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim
  • , constant, on-demand, and reliable manner [3][4][5][6]. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play critical roles in many clean energy storage and conversion devices (e.g., hydrogen produced from water splitting via water electrolyzers, hydrogen fuel cells, and metal–air
  • seems to facilitate the process of adsorption/desorption of intermediate species and the charge transfer ability during hydrogen evolution reaction (HER)/OER. In addition, the interfaces between Ni3C and N-doped C probably strongly reshuffle the electronic density, resulting in enhanced catalytic
PDF
Album
Full Research Paper
Published 02 Dec 2020

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • gallium. Light ions in the range of m = 1–28 u (hydrogen to silicon) are of increasing interest due to the available high beam resolution in the nanometer range and their special chemical and physical behavior in the substrate. In this work, helium and neon ion beams from a helium ion microscope are
  • ]. In particular, light elements in the mass range of m = 1–28 u (hydrogen to silicon) and energies between a few and 80 kiloelectronvolts are of special interest. The combination of this energy range with the particular mass range allows one to reach single-digit nanometer and even sub-nanometer
  • the collision cascade and the origin of sputtered particles. From 2.5 × 105 ion impacts, for light elements such as hydrogen, down to 5000 ion impacts, for uranium, have been simulated (1 × 106 in total for all elements). The emission position of the sputtered particles (8.5 × 106 in total for all
PDF
Album
Full Research Paper
Published 18 Nov 2020

Selective detection of complex gas mixtures using point contacts: concept, method and tools

  • Alexander P. Pospelov,
  • Victor I. Belan,
  • Dmytro O. Harbuz,
  • Volodymyr L. Vakula,
  • Lyudmila V. Kamarchuk,
  • Yuliya V. Volkova and
  • Gennadii V. Kamarchuk

Beilstein J. Nanotechnol. 2020, 11, 1631–1643, doi:10.3762/bjnano.11.146

Graphical Abstract
  • breath contains oxidizing agents (e.g., nitrogen oxides, carbon oxide, and sulfur oxides), reducing agents (e.g., hydrogen sulfide, ammonia, mercaptans, and organic molecules), and other chemically active components that can participate in various chemical transformations. It is known, for example, that
PDF
Album
Full Research Paper
Published 28 Oct 2020

PTCDA adsorption on CaF2 thin films

  • Philipp Rahe

Beilstein J. Nanotechnol. 2020, 11, 1615–1622, doi:10.3762/bjnano.11.144

Graphical Abstract
  • herringbone pattern, are not compatible with the three-fold rotational symmetry and the surface lattice dimensions. The adsorption geometry seems to especially block the common hydrogen bond motif between PTCDA molecules. Conclusion Adsorption properties of PTCDA molecules on Si(111)-(7 × 7), CaF1/Si(111
  • ) surface area. (c) Example of imaging PTCDA on a CaF2/CaF1/Si(111) multilayer in constant-height mode. (f) Model drawing of a single PTCDA molecule (black: carbon, white: hydrogen, red: oxygen atoms). Statistical analysis of (a) the double-lobe orientation on the CaF1 layer and (b) the nearest-neighbour
PDF
Album
Full Research Paper
Published 26 Oct 2020

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • hydrogen (class Hy). The standard deviation of the adsorption energy (σB) in the surrogate PES is 0.019 eV in the global minimum and 0.025 eV on average over all minima (Table 1), which shows low uncertainty of the model in these points. The energies of the identified structures, calculated with DFT (ED
  • charge comes from hydrogen (H) atoms, with O as the second notable contributor. In class Hy structures, the positive charge of camphor originates predominantly from H atoms. In the partial DOS of the relaxed structures (Figure 7b,c), we analyze the electronic states of the adsorbed camphor close to the
  • the molecule via oxygen (class Ox) and (b) physisorption via hydrogen (class Hy). (c) Adsorption site of camphor in the relaxed structures (center of the molecule) and the high-symmetry points of the Cu(111) surface. Electronic properties of different camphor adsorbates. (a) The sum of partial charges
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • ]. The 31P NMR spectra of Figure 4 show the results obtained when Cu2O NPs with an approximate size of 29 nm were used for the degradation. In this case, the final product formed is dimethyl hydrogen phosphate with a chemical shift of −4.9 ppm in deuterated chloroform (CDCl3). Similarly, the chemical
  • shift of 42.2 ppm is that of dimethyl phosphorothioate (P=S) [40], which then hydrolyzes after 44 h to form dimethyl hydrogen phosphate (P=O) and the NMR peak at −4.9 ppm developes [42]. The intensity of the chemical shift is relatively low due to the low solubility in CDCl3, but when D2O is used the
  • , because both 4-nitrophenol and dimethyl hydrogen phosphate (products) are more soluble in water than in chloroform but methyl parathion (reactant) is more soluble in CDCl3. The presence of 4-nitriphenol as reaction product has one important implication. It suggests the hydrolysis reaction takes place
PDF
Album
Full Research Paper
Published 12 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • contrast, 2H-TCNPP is found to either form metal-organic networks or structures that, depending on the substrate, are stabilized by hydrogen bonding or dipolar coupling via its cyano groups [10][25][26]. This is similar to findings for other cyano-functionalized molecules [27][28][29][30]. The aim of this
  • that are oriented parallel to each other. This bond mediates the interaction along the vertical direction in Figure 6b. The second is a hydrogen bond between a CN group and the macrocycle of a molecule nearby (along the horizontal direction in Figure 6b). A structural analysis of Figure 6b reveals a
  • superstructure with respect to the quasi-hexagonal structure of the CoO 2BL film (red rectangle in Figure 6b). Arranging 2 in its gas phase configuration within this cell, we find that the CN groups of the dipolar bond have a distance of 0.4 nm and that the hydrogen bond has a length of 0.3 nm between the N atom
PDF
Album
Full Research Paper
Published 05 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • interactions, including N…H bonds. Distinct organizational motifs could be discriminated (see inset of Figure 2b). The terminal N atom of one molecule could either establish H-bonding with a hydrogen atom of an adjacent pyridyl moiety of a neighboring molecule (link labeled d1 in Figure 2b, projected N…H bond
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • microorganisms [151]. Superoxide radicals (O2−), hydroxyl radicals (•OH), hydrogen peroxide (H2O2), and singlet oxygen (1O2) are the most well-known ROS. The mechanism that better explains the synthesis of ROS from NPs is based on their photocatalytic activity (Figure 5). Metal compounds receive enough energy
  • , genes related to the general stress response were upregulated. Genes protecting against hydrogen peroxide oxidative damage, catalase/hydroperoxidase, superoxide radicals degradation genes, superoxide dismutase, and superoxide removal transcriptional activator, were upregulated in a range varying from
PDF
Album
Review
Published 25 Sep 2020
Other Beilstein-Institut Open Science Activities