Search results

Search for "hyperthermia" in Full Text gives 69 result(s) in Beilstein Journal of Nanotechnology.

Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

  • M. Fátima Barroso,
  • M. Alejandra Luna,
  • Juan S. Flores Tabares,
  • Cristina Delerue-Matos,
  • N. Mariano Correa,
  • Fernando Moyano and
  • Patricia G. Molina

Beilstein J. Nanotechnol. 2016, 7, 655–663, doi:10.3762/bjnano.7.58

Graphical Abstract
  • decorate vesicles that could be used as a model system to illustrate controlled delivery of molecules under mild hyperthermia. These systems were prepared by using cetyltrimethylammonium chloride and myristic acid, and the nanomaterial was synthetized in aqueous alkaline solution by a co-precipitation
PDF
Album
Full Research Paper
Published 02 May 2016

An adapted Coffey model for studying susceptibility losses in interacting magnetic nanoparticles

  • Mihaela Osaci and
  • Matteo Cacciola

Beilstein J. Nanotechnol. 2015, 6, 2173–2182, doi:10.3762/bjnano.6.223

Graphical Abstract
  • frequencies and amplitudes of external magnetic fields for biomedical applications, especially for tumor therapy by magnetic hyperthermia. Keywords: hyperthermia; magnetic nanoparticles; relaxation process; specific loss power; susceptibility losses; Introduction Magnetic nanoparticles are important for
  • applications in biomedicine, in particular for hyperthermia-based treatments. Recent medical researches show that the heat generation of iron oxide nanoparticles in an alternating magnetic field activates an immune system response to tumors [1]. In magnetic nanoparticle systems for hyperthermia applications
  • , one major issue is to control the parameters of the system, particularly the specific loss power (SLP). SLP is defined as the electromagnetic power lost per nanofluid mass unit. SLP is expressed in watts per kilogram. Recent researches show that the heating process through hyperthermia with magnetic
PDF
Album
Full Research Paper
Published 19 Nov 2015

A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

  • Houcine Labiadh,
  • Tahar Ben Chaabane,
  • Romain Sibille,
  • Lavinia Balan and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2015, 6, 1743–1751, doi:10.3762/bjnano.6.178

Graphical Abstract
  • applications. They can, for example, be used as a contrast agent in magnetic resonance imaging or as therapeutic agents in magnetic fluid hyperthermia [9][10]. Several successful applications such as targeted drug delivery, bioseparation, biodetection, and labelling and sorting of cells [11][12][13][14] are
PDF
Album
Full Research Paper
Published 17 Aug 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • paramagnetism, super saturation, and having free electrons, magnetic nanoparticles have emerged as promising candidates for various medical and biological applications including magnetic resonance imaging (MRI) (as a contrast agent), smart drug delivery (as drug carriers), gene therapy, hyperthermia and tissue
PDF
Album
Full Research Paper
Published 03 Aug 2015

Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

  • Marcin Krajewski,
  • Wei Syuan Lin,
  • Hong Ming Lin,
  • Katarzyna Brzozka,
  • Sabina Lewinska,
  • Natalia Nedelko,
  • Anna Slawska-Waniewska,
  • Jolanta Borysiuk and
  • Dariusz Wasik

Beilstein J. Nanotechnol. 2015, 6, 1652–1660, doi:10.3762/bjnano.6.167

Graphical Abstract
  • inexpensive, a lot of them are biocompatible and low-toxic, it makes them very interesting from an application point of view. So far, they have been applied in many biomedical applications including magnetic resonance imaging (MRI) contrast enhancements [1], direct drug delivery systems [2], hyperthermia
PDF
Album
Full Research Paper
Published 29 Jul 2015

Thermal treatment of magnetite nanoparticles

  • Beata Kalska-Szostko,
  • Urszula Wykowska,
  • Dariusz Satula and
  • Per Nordblad

Beilstein J. Nanotechnol. 2015, 6, 1385–1396, doi:10.3762/bjnano.6.143

Graphical Abstract
  • their application in various fields. The list of possible applications encompasses biomedical engineering, MRI contrast agents, hyperthermia treatment, sensing and biosensing [2][3]. They are also very promising candidates for electrical-related applications, for example, energy and magnetic storage
PDF
Album
Full Research Paper
Published 23 Jun 2015

The convenient preparation of stable aryl-coated zerovalent iron nanoparticles

  • Olga A. Guselnikova,
  • Andrey I. Galanov,
  • Anton K. Gutakovskii and
  • Pavel S. Postnikov

Beilstein J. Nanotechnol. 2015, 6, 1192–1198, doi:10.3762/bjnano.6.121

Graphical Abstract
  • ], magnetic resonance imaging [5], targeted drug delivery [6], catalysis [7] and controlled local hyperthermia [8]. Iron is one of the most abundant metals on earth [9]; therefore, the price of precursors for obtaining magnetic iron NPs is inexpensive, thus the modification and synthesis of functionalized
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • MCF-7. Studies suggested that the cytotoxicity effect on MCF-7 was higher as compared to HeLa cells. Moreover, to induce the magnetic behavior, arginine-coated iron oxide NPs were mixed with DOX-loaded YVO4-MSN NPs. This biphasic mixture was studied for hyperthermia treatment in which the whole
PDF
Album
Review
Published 24 Feb 2015

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

  • Lisa Landgraf,
  • Ines Müller,
  • Peter Ernst,
  • Miriam Schäfer,
  • Christina Rosman,
  • Isabel Schick,
  • Oskar Köhler,
  • Hartmut Oehring,
  • Vladimir V. Breus,
  • Thomas Basché,
  • Carsten Sönnichsen,
  • Wolfgang Tremel and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2015, 6, 300–312, doi:10.3762/bjnano.6.28

Graphical Abstract
  • ; Introduction To advance the field of nanomedicine, innovative nanoparticle formulations with suitable properties for diagnostic imaging, therapy (e.g., magnetic hyperthermia), delivery of drugs and siRNA have been developed. Apart from their feasibility for the respective application many of these
  • excellent magnetization curves leading to T2 and T1 relaxivities during MRI [15][16][17][18][19][20]. Owing to their magnetic properties, they can particularly be used for hyperthermia applications and magnetic targeting through the body [21][22][23][24][25][26][27]. An assembly of multiple nanoparticles to
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2015

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • [54], in hyperthermia therapy for tumours [55][56], in tissue engineering [57], for in vivo [58] and in vitro [59] imaging. The electrical conductivity of CNTs lies at the foundation of the proposal for employing CNTs as smart-scaffolds for excitable cells such as neurons [60] and cardiac cells [61
PDF
Album
Correction
Review
Published 23 Oct 2014

The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions

  • Christoph Bantz,
  • Olga Koshkina,
  • Thomas Lang,
  • Hans-Joachim Galla,
  • C. James Kirkpatrick,
  • Roland H. Stauber and
  • Michael Maskos

Beilstein J. Nanotechnol. 2014, 5, 1774–1786, doi:10.3762/bjnano.5.188

Graphical Abstract
  • . Hence, they are highly suitable for tailored biomedical applications, for example, as drug carrier systems, as agents in hyperthermia, or as contrast agents for magnetic resonance imaging (MRI) [52][53]. Silica nanoparticles: As most of the common crystalline SiO2 particles are not in the nanometer-size
PDF
Album
Full Research Paper
Published 15 Oct 2014

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • cells. Surface modifications are already well described as the particles are used in many applications, such as magnetic contrast agents, separations, diagnostics, drug delivery, and hyperthermia [13][14][15][16][17]. In terms of coating, many low- and high-molecular-weight compounds were proposed, e.g
  • , magnetic hyperthermia or magnetofection. Transmission electron micrographs of (a) non-coated, (b) D-mannose- and (c) PDMAAm-coated γ-Fe2O3 nanoparticles. Effect of non-coated, D-mannose- and PDMAAm-coated γ-Fe2O3 on the in vitro survival of 4BL human cells at different concentrations of particles in the
PDF
Album
Full Research Paper
Published 08 Oct 2014

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • acting as heat mediators in hyperthermia treatments [29][30][31]. Despite their interest, few attempts to develop CPT-delivery systems based on SPION have been reported [32][33][34], and none of them examine their ability to adsorb CPT, nor takes advantage of the desirable properties offered by
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst

  • Hongwang Wang,
  • Jim Hodgson,
  • Tej B. Shrestha,
  • Prem S. Thapa,
  • David Moore,
  • Xiaorong Wu,
  • Myles Ikenberry,
  • Deryl L. Troyer,
  • Donghai Wang,
  • Keith L. Hohn and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2014, 5, 760–769, doi:10.3762/bjnano.5.88

Graphical Abstract
  • been developed [34][35][36][37][38][39][40][41]. The application of such materials in cancer diagnosis and cancer treatment, such as MRI and magnetic hyperthermia are intensively studied [42][43][44]. The use of iron-containing nanomaterials as catalysts for the methanol oxidation reaction [45], and
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2014

Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core–shell magnetic nanoparticles

  • M. Hennes,
  • A. Lotnyk and
  • S. G. Mayr

Beilstein J. Nanotechnol. 2014, 5, 466–475, doi:10.3762/bjnano.5.54

Graphical Abstract
  • as powerful nanotools in many areas of biology, biophysics and medicine [1]. Possible applications include their use as contrast agents for cell tracking via magnetic resonance imaging (MRI) [2], as colloidal mediators in cancer therapy (hyperthermia) [3] or as nanocarriers for targeted drug delivery
PDF
Album
Full Research Paper
Published 14 Apr 2014

Near-infrared dye loaded polymeric nanoparticles for cancer imaging and therapy and cellular response after laser-induced heating

  • Tingjun Lei,
  • Alicia Fernandez-Fernandez,
  • Romila Manchanda,
  • Yen-Chih Huang and
  • Anthony J. McGoron

Beilstein J. Nanotechnol. 2014, 5, 313–322, doi:10.3762/bjnano.5.35

Graphical Abstract
  • hyperthermia (HT). HT is currently used in clinical trials for cancer therapy in combination with radiotherapy and chemotherapy. One of the potential problems of HT is that it can up-regulate hypoxia-inducible factor-1 (HIF-1) expression and enhance vascular endothelial growth factor (VEGF) secretion. Results
  • plasma half-life of about 3 min and a poor stability in aqueous solution, which complicates the timing of imaging and hyperthermia (HT) [8]. In our previous work, we investigated the commercially available cyanine dye IR820 and proposed that it could be an alternative for ICG. Our studies have shown that
  • IR820 can be used in lieu of ICG in imaging and hyperthermia applications. Three-minute laser exposure (power at 1440 J/cm2) with 5 µM IR820 or ICG can elevate the temperature of cell culture media from 37 °C to 42 °C or from 37 °C to 46 °C, respectively [9]. Despite the fact that IR820 has a lower
PDF
Album
Supp Info
Full Research Paper
Published 18 Mar 2014

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating
  • prodrug to the tumor site, and, upon activation of a previously silenced gene with doxycycline, significantly increased survival in a murine pancreatic cancer model in mice was observed [28]. Hyperthermia uses heat to kill cancer cells [29]. Numerous clinical trials have demonstrated that the combination
  • of hyperthermia with radiation therapy and chemotherapy can greatly improve the efficacy of cancer treatment [30][31]. Ultrasmall magnetic nanoparticles generate heat efficiently in an alternating magnetic field (AMF). Due to their superior properties, such as negligible or low toxicity
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

Improvement of the oxidation stability of cobalt nanoparticles

  • Celin Dobbrow and
  • Annette M. Schmidt

Beilstein J. Nanotechnol. 2012, 3, 75–81, doi:10.3762/bjnano.3.9

Graphical Abstract
  • to their application potential in data storage [1] and in sensor applications [2], as well as for biomedical uses in therapy and diagnosis. By opening novel mechanisms for drug targeting [3], controlled drug release, hyperthermia [4][5] and imaging applications [6][7] there is a need for well
PDF
Album
Supp Info
Letter
Published 30 Jan 2012

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • the medical field [7], e.g., in hyperthermia [8], contrast enhancing in magnetic resonance imaging [9][10] or the use as cell markers [9] which in-turn can be read out by highly-sensitive devices like TMR-sensors [11]. Moreover, magnetic NPs are thought to improve a variety of catalytic reactions [12
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities