Search results

Search for "imaging" in Full Text gives 842 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • on the environment. Many nanoparticles showed great potential and proved their utility in biology and medicine. There are multiple types of nanoparticles routinely used in biology and related sciences for sensing, targeting or imaging, including quantum dots for fluorescence applications and electron
  • magnetic resonance imaging (MRI) (for more on this topic consult [11][12][13][14]). Among the abovementioned nanoscience products, iron oxide nanoparticles, especially superparamagnetic iron oxide nanoparticles (SPIONs) hold a lot of promise in many domains, not only regarding biology [15]. SPIONs consist
  • of 2000–2019. Review Benefits of SPIONs or what makes SPIONs such a promising aspect for therapeutics and adjunct treatments Firstly, certain SPIONs are already clinically approved for magnetic resonance imaging (MRI) [24][25][26]. For this application, SPIONs have been functionalized with dextran
PDF
Album
Review
Published 27 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • molecule is freely hanging between the electrodes [7][8][9][10]. While these configurations give access to important transport properties [11][12][13], they do not allow for imaging molecular properties with intramolecular resolution [14]. The latter requires the molecules to be flat lying on a surface. To
PDF
Album
Full Research Paper
Published 20 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • ] for extended reviews on the topic). In the last decade, Te has also become an attractive element with great biological applicability since it can be used as quantum dots in imaging and diagnostics and has antibiotic properties [3]. Even though Te has a biological relevance, it is largely used in the
PDF
Album
Full Research Paper
Published 10 Jul 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • multimodal magnetic resonance imaging (MRI) technique has been extensively studied over the past few years since it offers complementary information that can increase diagnostic accuracy. Simple methods to synthesize contrast agents are necessary for the development of multimodal MRI. Herein, uniformly
  • -dihydroxyhydrocinnamic acid (DHCA); dual-mode imaging; Fe3O4/Gd2O3-DHCA nanocubes; gadolinium oxide (Gd2O3); iron(II,III) oxide (Fe3O4); magnetic resonance imaging (MRI); Introduction Magnetic resonance imaging (MRI) is a noninvasive technique that has been broadly used in the clinical field to assist in disease
  • Gd-DTPA (gadolinium diethylenetriaminepentacetate), are highly advantageous for diagnostic imaging, since they generate bright images, the renal toxicity of Gd-based contrast agents should not be ignored [18][19]. On the other hand, T2 contrast agents, such as Fe3O4 nanoparticles, have a lower
PDF
Album
Full Research Paper
Published 08 Jul 2020

Key for crossing the BBB with nanoparticles: the rational design

  • Sonia M. Lombardo,
  • Marc Schneider,
  • Akif E. Türeli and
  • Nazende Günday Türeli

Beilstein J. Nanotechnol. 2020, 11, 866–883, doi:10.3762/bjnano.11.72

Graphical Abstract
  • fluorescence imaging [68]. Nanoparticles could be observed in the glioma bed and infiltrating margin, showing that nanoparticles functionalized with angiopep-2 could exhibit dual-targeting abilities. Firstly, angiopep-2 allowed the nanoparticles to cross the BBB through RMT by recognition of LRP1 on the BBB
  • AuNPs by allowing them to cross the BBB through RMT. Moreover, AuNPs have been extensively used to reach brain tumors. Due to their small size, AuNPs can diffuse more easily through the disrupted BBB of the brain tumor vasculature, making them a useful carrier for drugs or imaging agents. The use of
  • agents for imaging of the liver by the Food and Drug Administration (FDA) [183]. However, these formulations are no longer available because of concerns about toxicity and fatal anaphylactic reactions. Nowadays, ferumoxytol is the only SPION formulation approved by the FDA for human use, under the
PDF
Album
Review
Published 04 Jun 2020

Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration

  • Gyllion B. Loozen,
  • Arnica Karuna,
  • Mohammad M. R. Fanood,
  • Erik Schreuder and
  • Jacob Caro

Beilstein J. Nanotechnol. 2020, 11, 829–842, doi:10.3762/bjnano.11.68

Graphical Abstract
  • Gyllion B. Loozen Arnica Karuna Mohammad M. R. Fanood Erik Schreuder Jacob Caro Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Netherlands present address: Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737 Jena, Germany LioniX
  • microbath. After dicing of the wafer, a millimeter-scale macrobath is created on each chip by placing a 100 µm thick imaging spacer (Biolink Relink 1300) with a 4.0 mm hole. The adhesion strength of the top and bottom surface of the image spacer are different. The weaker adhesive is affixed to the chip to
  • is sealed with a 150 µm thick coverslip by pushing it onto the sticky imaging spacer, thus reaching the stage shown in Figure 5i. Owing to the meniscus, fluid evaporation is not fast enough to cause air inclusion under the coverslip during sealing. In Figure 6, we give an impression of the final
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • surface in a flat-lying position, but their mobility renders imaging impossible. With increasing coverage, increasingly more molecules appear to be stable due to either the influence of surface defects or steric interactions. However, SnPcs do not form a well-defined, regular structure, which suggests
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

A set of empirical equations describing the observed colours of metal–anodic aluminium oxide–Al nanostructures

  • Cristina V. Manzano,
  • Jakob J. Schwiedrzik,
  • Gerhard Bürki,
  • Laszlo Pethö,
  • Johann Michler and
  • Laetitia Philippe

Beilstein J. Nanotechnol. 2020, 11, 798–806, doi:10.3762/bjnano.11.64

Graphical Abstract
  • (yielding to the same porosity), changing only the second anodization time (from 120 to 600 s) to obtain different film thicknesses (from 209 ± 12 nm to 380 ± 15 nm). Focused ion beam (FIB) milling and field-emission scanning electron microscopy (FESEM) imaging were used to accurately determine the
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2020

Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface

  • Stefania Castelletto,
  • Faraz A. Inam,
  • Shin-ichiro Sato and
  • Alberto Boretti

Beilstein J. Nanotechnol. 2020, 11, 740–769, doi:10.3762/bjnano.11.61

Graphical Abstract
  • atom probe tomography, providing sub-nanometer spatial information of the chemical composition, scanning tunneling electron microscope (STEM) imaging and spectroscopy at low beam energy [65], enabling the characterization of individual defects in h-BN, and atomic electron tomography. However, all these
  • as well as from nearby emitters which are not resolved by the optical imaging system. A small fraction of the background counts may also come from the laser back reflection that passes through the filter. The coincidence data is background corrected and then normalized to obtain the intensity
PDF
Album
Review
Published 08 May 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • spectroscopy measurements in an ultrahigh vacuum (UHV) environment. The tip geometry, which is initially unknown and potentially irregularly shaped, is determined using transmission electron microscopy (TEM) imaging. It is then used to generate theoretical interaction force–displacement relations, which are
  • profile of the tip apex. The images were then stitched together to determine the necessary rotation required to account for the tilt caused by the TEM holder. The second factor was accounted for by rotating the TEM images by an additional 22.5°. Following TEM imaging, the probe was mounted to an AFM probe
  • topographic imaging of the surface, the tip–sample contact potential difference was determined by measuring the probe frequency shift as a function of the sample bias voltage. A DC bias was then applied to the sample surface for all subsequent measurements to compensate for this potential difference. Initial
PDF
Album
Full Research Paper
Published 06 May 2020

Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach

  • Edgar Cruz Valeriano,
  • José Juan Gervacio Arciniega,
  • Christian Iván Enriquez Flores,
  • Susana Meraz Dávila,
  • Joel Moreno Palmerin,
  • Martín Adelaido Hernández Landaverde,
  • Yuri Lizbeth Chipatecua Godoy,
  • Aime Margarita Gutiérrez Peralta,
  • Rafael Ramírez Bon and
  • José Martín Yañez Limón

Beilstein J. Nanotechnol. 2020, 11, 703–716, doi:10.3762/bjnano.11.58

Graphical Abstract
  • Guanajuato. Ex Hacienda San Matías s/n C.P. 36020. Guanajuato, Guanajuato, México 10.3762/bjnano.11.58 Abstract In this work, a high-resolution atomic force acoustic microscopy imaging technique is developed in order to obtain the local indentation modulus at the nanoscale level. The technique uses a model
PDF
Album
Full Research Paper
Published 04 May 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • formation of point contacts. But such studies are difficult in case of EM experiments. There were attempts to record real-time SEM and TEM of EM junctions [18][19][20], but these imaging studies did not observe the conductance states at the semi-classical range just prior to point contact formation. In our
PDF
Album
Full Research Paper
Published 22 Apr 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • ) analysis were performed with a Zeiss Merlin field-emission SEM instrument. Transmission electron microscopy images were collected with a Zeiss Libra 120 EFTEM. Confocal laser scanning microscopy (CLSM) imaging of bacterial biofilms was performed with a Nikon AIR MP microscope equipped with a 60×, NA 1.4
PDF
Album
Full Research Paper
Published 14 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • additional mechanical (stiffness, elasticity), electrical (conductivity, surface potential), electrochemical (reactivity, mobility and activity), mechanoelectrical (piezoelectricity) and chemical (chemical bonding) material properties. In situ AFM imaging of the sample topography is often used to study the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Examination of the relationship between viscoelastic properties and the invasion of ovarian cancer cells by atomic force microscopy

  • Mengdan Chen,
  • Jinshu Zeng,
  • Weiwei Ruan,
  • Zhenghong Zhang,
  • Yuhua Wang,
  • Shusen Xie,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2020, 11, 568–582, doi:10.3762/bjnano.11.45

Graphical Abstract
  • than that of cells with lower invasive capability [45]. Furthermore, the relationship between invasiveness and viscoelastic properties was reviewed under biochemical modifications of cancer cells [46]. Furthermore, the microfilament density was examined by imaging cytoskeleton F-actin. ActinGreen
  • understanding the molecular mechanism regulating the relationship between the viscoelastic and tumorigenic properties in ovarian cancer cells, the microfilament density of F-actin cytoskeleton was examined by fluorescence imaging of these cells after treatment with 0.25 μM Ech for 0, 3 and 6 h (Figure 7). The
  • . Confocal imaging of the microfilament skeleton The cytoskeletal organization in ovarian cancer cells was investigated by confocal imaging. The cells were seeded into 35 mm cover glass bottom culture dishes (Nest) at a density of 5 × 104 mL−1 and cultured in the 37 °C incubator for 2 days prior to staining
PDF
Album
Full Research Paper
Published 06 Apr 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • targeted drug delivery, active pharmaceutical carriers and medical imaging. However, poor knowledge of the side effects related to their use is an obstacle to clinical translation. For the development of molecular drugs, the concept of safe-by-design has become an efficient pharmaceutical strategy with the
  • at room temperature. In the case of SNPs, the samples were sputter-coated with a thick gold film (≈17 nm) under argon atmosphere to improve secondary electron emission during SEM imaging. The NPs morphology was observed at an acceleration voltage of 20 kV. Dynamic light scattering (DLS) The mean
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • ; biosensing; gold nanoclusters; immunoassay; luminescence; self-assembly; theranostics; Introduction Imaging methods play a central role in understanding the structural and functional biological processes of biomolecules, cells, tissues, organs, and even entire living organisms [1][2]. The importance of
  • bioimaging in preclinical, clinical evaluation and patient treatment has encouraged extensive investigation to develop new imaging methods [3][4]. Among several imaging techniques, fluorescence microscopy has evolved as a widely used non-invasive method to visualize real-time biological processes with high
  • ]. Luminescence can also be achieved via intramolecular energy transfer between an organic ligand and lanthanide metal ions through chelation [11]. Large Stokes shift, high quantum yield and long fluorescence lifetime make lanthanide complexes excellent candidates in imaging applications [12][13]. The lanthanide
PDF
Album
Review
Published 30 Mar 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2020

Current measurements in the intermittent-contact mode of atomic force microscopy using the Fourier method: a feasibility analysis

  • Berkin Uluutku and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2020, 11, 453–465, doi:10.3762/bjnano.11.37

Graphical Abstract
  • contact-mode imaging. To explore its feasibility, we derive the analytical form of the tip–sample current that would be obtained for attractive (noncontact) and repulsive (intermittent-contact) dynamic AFM characterization, and compare it with results obtained from numerical simulations. Although
  • , can be destructive to soft samples [14][15][16]. In fact, C-AFM has been deliberately used as an imprinting tool in the past [17][18]. For the cases where the sample is rather delicate, intermittent-contact mode (ICM) imaging, where the tip and the sample interact briefly at the bottom of each
  • -conductive tip. Electrical noise is anticipated to also introduce challenges. Although classical C-AFM can be affected by noise as well, the expected current magnitude in this mode of imaging should be larger than for ICM-AFM for the reasons described above, such that the current signal-to-noise ratio for
PDF
Album
Full Research Paper
Published 13 Mar 2020

Nanoarchitectonics: bottom-up creation of functional materials and systems

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2020, 11, 450–452, doi:10.3762/bjnano.11.36

Graphical Abstract
  • hydroxide/sepiolite hybrids [31], and cell surface engineering with halloysite-doped silica cell imprints for shape recognition of human cells [32]. In another example, magnetic nanoparticles were attached to microbubble shells for enhanced biomedical imaging [33]. In a final example, the detection of the
PDF
Album
Editorial
Published 12 Mar 2020

Atomic-resolution imaging of rutile TiO2(110)-(1 × 2) reconstructed surface by non-contact atomic force microscopy

  • Daiki Katsube,
  • Shoki Ojima,
  • Eiichi Inami and
  • Masayuki Abe

Beilstein J. Nanotechnol. 2020, 11, 443–449, doi:10.3762/bjnano.11.35

Graphical Abstract
  • using LEED and STM has revealed that the (1 × 2) LEED pattern was observed even if the (1 × 2) structure is formed only partially as shown in Figure 1c [20]. This indicates that real-space imaging with atomic resolution, i.e., STM and NC-AFM, would be helpful for a careful determination of the surface
  • . High-resolution NC-AFM imaging revealed that the Ti2O3 rows are asymmetric structures. Experimental All experiments were conducted using our custom-built system combining NC-AFM, STM, and LEED operated in UHV at room temperature [29]. Nb-doped (0.05 wt %) rutile TiO2(110) substrates (Shinkosha Corp
  • .) were used. A rutile TiO2(110)-(1 × 2) reconstructed surface was prepared by iterating a surface cleaning process of Ar+ sputtering (2 keV, Ar partial pressure of 3.0 × 10−4 Pa, ion current of ca. 1.1 µA, 10 min) and annealing (substrate temperature of ca. 1000 °C, 30 min). STM and NC-AFM imaging was
PDF
Album
Full Research Paper
Published 10 Mar 2020

Brome mosaic virus-like particles as siRNA nanocarriers for biomedical purposes

  • Alfredo Nuñez-Rivera,
  • Pierrick G. J. Fournier,
  • Danna L. Arellano,
  • Ana G. Rodriguez-Hernandez,
  • Rafael Vazquez-Duhalt and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2020, 11, 372–382, doi:10.3762/bjnano.11.28

Graphical Abstract
  • , handling, and simple structure, plant viruses are attractive for some biomedical applications. Plant bromoviruses, such as the brome mosaic virus (BMV), are viral bionanoparticles that have been proposed as platforms for drug delivery in different therapies, and as diagnostic imaging agents in cancer [18
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • . Keywords: cell receptors; drug targeting; endocytosis; nanoparticle corona; nanoparticle uptake; Introduction Nano-sized materials are widely studied in nanomedicine for their potential use as drug carriers, in imaging, and for diagnostic purposes [1][2][3]. Because of their size, they can interact with
  • endosomal compartment for caveolae, the “caveosome” [214]. Recent advances in cellular imaging and gene editing could overcome some of these issues. For instance, the use of stably transfected cell lines might be a good solution when the total depletion of a protein is required to shut down a pathway (often
PDF
Album
Review
Published 14 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • carriers. Obviously, if the blend composition or the morphology of the donor and acceptor sub-networks vary, the interface dipoles fluctuate as well (in direction and magnitude). Prior to pump–probe KPFM spectroscopy, the BHJ photoresponse was investigated by differential SPV imaging (Figure 8) [40]. Here
  • ., the SPV) can be reconstructed by simple data processing. The results are presented in Figure 8. The topographic and dark-state potential images reproduce fairly well the ones observed by the standard imaging process (compare in particular the histograms in Figure 7c and Figure 8d). The SPV is in
  • spectroscopic imaging presents an additional degree of difficulty, especially in terms of acquisition time. To maintain a reasonable S/N ratio, higher probe-to-pump duty ratios were used (4% and 5% for the first and the second sequence, respectively). The pump–probe delays were set to focus on the SPV decay
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • temperature for subsequent use in the transport experiments. Characterization Characterization of hydrogels The morphology and texture of the different hydrogels were characterized on a Hitachi S3400 SEM. Hydrogel samples for SEM imaging were prepared by cutting thin cross-sectional slices of 15 mm diameter
  • interval as error bars. A combination of swelling behavior results and surface texture characterization of the gels via SEM imaging was used to select the best suitable hydrogel formulation to fabricate the flow channels mimicking physiological structures for the subsequent transport studies
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020
Other Beilstein-Institut Open Science Activities