Search results

Search for "iron oxide" in Full Text gives 146 result(s) in Beilstein Journal of Nanotechnology.

Influence of surface-modified maghemite nanoparticles on in vitro survival of human stem cells

  • Michal Babič,
  • Daniel Horák,
  • Lyubov L. Lukash,
  • Tetiana A. Ruban,
  • Yurii N. Kolomiets,
  • Svitlana P. Shpylova and
  • Oksana A. Grypych

Beilstein J. Nanotechnol. 2014, 5, 1732–1737, doi:10.3762/bjnano.5.183

Graphical Abstract
  • labeling of cells in order to track them both in diagnostics and therapeutics [1][2]. For example, mesenchymal [3], neural [4], and bone marrow [5] stem cells, as well as other cells are widely labeled by surface-coated iron oxide nanoparticles. Other applications of nanoparticles involve the delivery of
  • for the above mentioned purposes [9]. Monosized iron oxide nanoparticles, sometimes called ultra-small superparamagnetic iron oxide nanoparticles, play the dominant role. Quantum dots, gold and, recently, also upconversion nanoparticles are used less frequently. The main advantages of iron oxides
  • ), although many cells were destroyed after treatment with the nanoparticles (Figure 3f). Obviously, unmodified γ-Fe2O3 particles were not internalized by the cells and could be responsible for cell death. The influence of iron oxide nanoparticles on the morphology of the vital organs of mice after unitary
PDF
Album
Full Research Paper
Published 08 Oct 2014

In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?

  • Moritz Nazarenus,
  • Qian Zhang,
  • Mahmoud G. Soliman,
  • Pablo del Pino,
  • Beatriz Pelaz,
  • Susana Carregal-Romero,
  • Joanna Rejman,
  • Barbara Rothen-Rutishauser,
  • Martin J. D. Clift,
  • Reinhard Zellner,
  • G. Ulrich Nienhaus,
  • James B. Delehanty,
  • Igor L. Medintz and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1477–1490, doi:10.3762/bjnano.5.161

Graphical Abstract
  • . Scheme depicting the different mechanisms of cellular endocytosis. Reproduced with permission from [41]. Copyright (2011) Elsevier. Fluorescence microscopy image showing the granular structure of internalized NPs inside A549 lung cancer cells (two types of iron oxide NPs with different surface chemistry
PDF
Album
Review
Published 09 Sep 2014

A sonochemical approach to the direct surface functionalization of superparamagnetic iron oxide nanoparticles with (3-aminopropyl)triethoxysilane

  • Bashiru Kayode Sodipo and
  • Azlan Abdul Aziz

Beilstein J. Nanotechnol. 2014, 5, 1472–1476, doi:10.3762/bjnano.5.160

Graphical Abstract
  • Sains Malaysia, 11800 Pulau Pinang, Malaysia 10.3762/bjnano.5.160 Abstract We report a sonochemical method of functionalizing superparamagnetic iron oxide nanoparticles (SPION) with (3-aminopropyl)triethoxysilane (APTES). Mechanical stirring, localized hot spots and other unique conditions generated by
  • ; superparamagnetic iron oxide nanoparticles (SPION); Findings Superparamagnetic iron oxide nanoparticles (SPION) have a wide range of applications in biomedical research and development. The main drawbacks of SPION are a high surface energy, van der Waals forces of attraction and dipole to dipole interactions that
  • of Fe in Fe2O3 or Fe3O4. This is due to similarity in the oxidation state of both iron oxide compounds. The chemical shifts observed in all the bands can be ascribed to the binding of the APTES on the SPION. The XRD pattern of the silanized SPION is shown in Figure 3. It corresponds to the JCPDS
PDF
Album
Supp Info
Letter
Published 08 Sep 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • .5.155 Abstract Semiconductor quantum dots (QD) and superparamagnetic iron oxide nanocrystals (SPIO) have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents
  • : hepatocytes; inflammation; Kupffer cells; liver sinusoidal endothelial cells; nanoparticle toxicity; nanoparticle uptake; quantum dots; superparamagnetic iron-oxide nanocrystals; Introduction The superior optical properties of QDs compared to organic dyes render them promising candidates for the demands of
  • employing various cell culture systems described toxic effects of QDs [3][4]. Iron-containing superparamagnetic iron oxide nanocrystals (SPIOs) used for magnetic resonance imaging (MRI) have a relative good reputation given that iron is an essential trace element and it can be assumed that iron from
PDF
Album
Full Research Paper
Published 02 Sep 2014

PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system

  • Paula M. Castillo,
  • Mario de la Mata,
  • Maria F. Casula,
  • José A. Sánchez-Alcázar and
  • Ana P. Zaderenko

Beilstein J. Nanotechnol. 2014, 5, 1312–1319, doi:10.3762/bjnano.5.144

Graphical Abstract
  • chemotherapeutic agent due to its poor water-solubility and chemical instability and, as a consequence, no effective administration means have been designed. In this work, camptothecin has been successfully loaded into iron oxide superparamagnetic nanoparticles with an average size of 14 nm. It was found that
  • ; cancer therapy; iron oxide superparamagnetic nanoparticles; polyethylene glycol; Introduction Camptothecin (CPT) is a quinoline based alkaloid, which exhibits a potent cytotoxic activity against a broad spectrum of tumours [1][2][3]. While most antineoplastic agents inhibit cancer cell proliferation by
  • by means of nano-formulations cover a wide range of organic nanomaterials [11][12][13][14][15][16][17][18][19]. Noticeably, a cyclodextrin-containing polymer–CPT nano-formulation is currently undergoing phase II clinical trials [20]. Superparamagnetic iron oxide nanoparticles (SPION) are particularly
PDF
Album
Supp Info
Letter
Published 19 Aug 2014

Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport

  • Tatiana Borisova,
  • Natalia Krisanova,
  • Arsenii Borуsov,
  • Roman Sivko,
  • Ludmila Ostapchenko,
  • Michal Babic and
  • Daniel Horak

Beilstein J. Nanotechnol. 2014, 5, 778–788, doi:10.3762/bjnano.5.90

Graphical Abstract
  • showed both negative and positive effects [1]. One of the concerns is that nanoparticles can potentially harm the function of or have toxic effects on human nerve cells owing to their ability to pass through biological membranes [2]. Superparamagnetic iron oxide nanoparticles are considered as promising
  • away, the inner magnetization of nanoparticles disappears, and therefore their agglomeration, which carries the risk of embolization of the capillary vessels, can be avoided [3]. A key issue for enhancing of permeability of iron oxide nanoparticles through the cell membrane is the modification of their
  • surface. In this context, biocompatible polymers can be attached to the surface of the nanoparticles to avoid their agglomeration and enhance their non-specific intracellular uptake [4]. Magnetic resonance imaging could be used for tracking labeled cells in vivo by using iron oxide nanoparticles coated by
PDF
Album
Full Research Paper
Published 04 Jun 2014

Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst

  • Hongwang Wang,
  • Jim Hodgson,
  • Tej B. Shrestha,
  • Prem S. Thapa,
  • David Moore,
  • Xiaorong Wu,
  • Myles Ikenberry,
  • Deryl L. Troyer,
  • Donghai Wang,
  • Keith L. Hohn and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2014, 5, 760–769, doi:10.3762/bjnano.5.88

Graphical Abstract
  • ) employing Fe/Fe3O4 nanoparticles as catalyst. The synthesis of the catalyst and the mechanism of CO2-hydrogenation will be discussed, as well as further applications of Fe/Fe3O4 nanoparticles in catalysis. Keywords: aromatic hydrocarbons; carbon dioxide reduction; heterogenous catalysis; iron/iron oxide
  • findings [51]. XPS analysis of the surface of the catalyst The XPS analysis [52] of the fresh catalyst (Table 1) is consistent with iron oxide that is covered by a molecular layer of oleylamine/HDA·HCl. XPS indicates a decreased carbon composition after the first five runs, followed by an increased carbon
  • is overcompensated during runs 6–10 by the deposition of carbon from the catalytic reaction. Carbon deposition is typically observed during the reaction of carbon dioxide or carbon monoxide with molecular hydrogen at iron oxide [53]. Interestingly, carbon can be (partially) removed from the surface
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2014

Thermal stability and reduction of iron oxide nanowires at moderate temperatures

  • Annalisa Paolone,
  • Marco Angelucci,
  • Stefania Panero,
  • Maria Grazia Betti and
  • Carlo Mariani

Beilstein J. Nanotechnol. 2014, 5, 323–328, doi:10.3762/bjnano.5.36

Graphical Abstract
  • La Sapienza, Piazzale Aldo Moro 2, I - 00185 Roma, Italy 10.3762/bjnano.5.36 Abstract Background: The thermal stability of iron oxide nanowires, which were obtained with a hard template method and are promising elements of Li-ion based batteries, has been investigated by means of thermogravimetry
  • by scanning electron microscopy. Conclusion: This complementary spectroscopy–microscopy study allows to assess the temperature limits of these Fe2O3 nanowires during operation, malfunctioning or abuse in advanced Li-ion based batteries. Keywords: IR spectroscopy; iron oxide; nanowires; scanning
  • ][20][21][22][23][24]. Within this context, iron oxide systems are convenient materials because of their low cost and environmental sustainability. One of the important issues in Li-ion batteries is the chemical and thermal stability of the components. Fe2O3 presents a definite chemical phase (Fe3
PDF
Album
Full Research Paper
Published 19 Mar 2014

Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

  • Shadab Ali Khan,
  • Sanjay Gambhir and
  • Absar Ahmad

Beilstein J. Nanotechnol. 2014, 5, 249–257, doi:10.3762/bjnano.5.27

Graphical Abstract
  • extended the work of biosynthesis of Gd2O3 nanoparticles to bioconjugation with taxol. Bioconjugation of taxol with gold and iron oxide nanoparticles has also been reported [15][16]. Taxol is one of the most important anticancer drugs used for breast, ovarian and lung cancers [17][18]. The potent
PDF
Album
Full Research Paper
Published 07 Mar 2014

Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

  • Nuri Yazdani,
  • Vipin Chawla,
  • Eve Edwards,
  • Vanessa Wood,
  • Hyung Gyu Park and
  • Ivo Utke

Beilstein J. Nanotechnol. 2014, 5, 234–244, doi:10.3762/bjnano.5.25

Graphical Abstract
  • substrate is annealed for 10 min at 725 °C in a flowing environment of Ar (400 sccm) and H2 (600 sccm) in order to reduce the iron oxide to metallic iron. After this reduction annealing, C2H4 (250 sccm) as a carbon precursor is supplied for 5 min, which results in the growth of vertically aligned
PDF
Album
Full Research Paper
Published 05 Mar 2014

Cyclic photochemical re-growth of gold nanoparticles: Overcoming the mask-erosion limit during reactive ion etching on the nanoscale

  • Burcin Özdemir,
  • Axel Seidenstücker,
  • Alfred Plettl and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2013, 4, 886–894, doi:10.3762/bjnano.4.100

Graphical Abstract
  • iron(III) nitrate into the PEO domains and applying a UV/ozone treatment iron oxide is obtained while the organic components are removed. Thus, after an additional annealing, a hexagonal array of Fe2O3 particles is obtained and can be used as mask for a subsequent etching process. Both of the last two
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2013

Synthesis of boron nitride nanotubes from unprocessed colemanite

  • Saban Kalay,
  • Zehra Yilmaz and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2013, 4, 843–851, doi:10.3762/bjnano.4.95

Graphical Abstract
  • that the mechanisms of the two different iron oxide catalysts, Fe3O4 or Fe2O3, are rather different. The SEM images showed that the BNNTs were obtained in high yield from colemanite as the starting compound with CVD technique in the presence of Fe2O3 and NH3 gas at 1280 °C. Only the use of Fe2O3
PDF
Album
Full Research Paper
Published 04 Dec 2013

A facile synthesis of a carbon-encapsulated Fe3O4 nanocomposite and its performance as anode in lithium-ion batteries

  • Raju Prakash,
  • Katharina Fanselau,
  • Shuhua Ren,
  • Tapan Kumar Mandal,
  • Christian Kübel,
  • Horst Hahn and
  • Maximilian Fichtner

Beilstein J. Nanotechnol. 2013, 4, 699–704, doi:10.3762/bjnano.4.79

Graphical Abstract
  • nanocomposite exhibits well constructed core–shell and nanotube structures, with Fe3O4 cores and graphitic shells/tubes. The as-synthesized material could be used directly as anode in a lithium-ion cell and demonstrated a stable capacity, and good cyclic and rate performances. Keywords: electrochemistry; iron
  • oxide; lithium-ion battery; nanoparticles; pyrolysis; Findings Due to high energy density and excellent cyclic performance, lithium-ion batteries (LIBs) have become the leading energy storage device for portable electronic markets and for powering upcoming electric vehicles [1][2]. In order to obtain
PDF
Album
Supp Info
Letter
Published 30 Oct 2013

Ferromagnetic behaviour of Fe-doped ZnO nanograined films

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Thomas Tietze,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2013, 4, 361–369, doi:10.3762/bjnano.4.42

Graphical Abstract
  • thin films (see micrographs in Figure 1a). In the samples with 0.1, 5, 12, and 20 atom % Fe only pure quartzite grains are present, according to the studies with selected area diffraction (Figure 1b), TEM and XRD. These methods reveal the presence of ternary cubic zinc–iron oxide ZnFe2O4 in samples
PDF
Album
Full Research Paper
Published 13 Jun 2013

Electrospinning preparation and electrical and biological properties of ferrocene/poly(vinylpyrrolidone) composite nanofibers

  • Ji-Hong Chai and
  • Qing-Sheng Wu

Beilstein J. Nanotechnol. 2013, 4, 189–197, doi:10.3762/bjnano.4.19

Graphical Abstract
  • , Fc may start to form some kind of iron oxide/nitride and eventually be fixed after a certain time in nitrogen gas. The final weight loss is about 48 wt%. When the temperature further increases to 600 °C, the residue does not change. The blank PVP nanofibers show two significant steps of weight loss
PDF
Album
Full Research Paper
Published 14 Mar 2013

Effect of spherical Au nanoparticles on nanofriction and wear reduction in dry and liquid environments

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2012, 3, 759–772, doi:10.3762/bjnano.3.85

Graphical Abstract
  • include, but are not limited to, their use in targeted drug delivery and chemical sensors in the identification of oil, removal of contaminants and enhanced oil recovery (EOR). Au, iron oxide, polymer and silica nanoparticles have been studied in targeted drug delivery [3][4][5][6][7][8]. In cancer
  • treatment, nanoparticles are either functionalized with biomolecules that recognize and attach to the cancer cells, [6][7] or in the case of iron-oxide nanoparticles, the nanoparticles are directed by an external magnetic field [9]. The cells are destroyed by drugs that coat the nanoparticles or by
  • release of this agent on contact with hydrocarbons is used as an indication of the presence of oil on recovery of the nanoparticles [10]. In contaminant removal, nanocomposites composed of collagen and superparamagnetic iron-oxide nanoparticles (SPIONs) have been investigated. The collagen selectively
PDF
Album
Full Research Paper
Published 15 Nov 2012

Paper modified with ZnO nanorods – antimicrobial studies

  • Mayuree Jaisai,
  • Sunandan Baruah and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2012, 3, 684–691, doi:10.3762/bjnano.3.78

Graphical Abstract
  • in the concentration of the nanoparticles [14]. Other metal oxides, such as iron oxide, also exhibit antibacterial and antifungal properties, as have been reported by Prucek et al. [15]. In a photocatalysis process, electron–hole pairs are generated through photonic excitation of wide-band-gap metal
PDF
Album
Full Research Paper
Published 11 Oct 2012

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

  • Hongwang Wang,
  • Tej B. Shrestha,
  • Matthew T. Basel,
  • Raj K. Dani,
  • Gwi-Moon Seo,
  • Sivasai Balivada,
  • Marla M. Pyle,
  • Heidy Prock,
  • Olga B. Koper,
  • Prem S. Thapa,
  • David Moore,
  • Ping Li,
  • Viktor Chikan,
  • Deryl L. Troyer and
  • Stefan H. Bossmann

Beilstein J. Nanotechnol. 2012, 3, 444–455, doi:10.3762/bjnano.3.51

Graphical Abstract
  • dopamine to SN38 Dopamine has been reported as a robust anchor to immobilize functional groups on the surface of iron oxide nanoparticles [39][40][41][42][43][44][45]. Introducing polyethylene glycol to the dopamine anchor can greatly improve both the solubility and biocompatibility of iron oxide
  • removed and 0 to 320 µg/mL of SN38-loaded Fe/Fe3O4 nanoparticles in fresh medium was added. After 24 h, the medium was removed; the cells were washed with 1× PBS three times, and stained with Prussian blue and counter stained by nuclear fast red to confirm that the loaded nanoparticles were iron/iron
  • oxide nanoparticles. Flow cytometry Flow cytometry was used to determine the percentage of cells loaded with MNP. The cells were plated in six-well plates at a density of 300,000 cm−2 and allowed to attach overnight. The next day, the cells reached 70% confluence. They were then incubated with 0, 20, 40
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2012

Magnetic nanoparticles for biomedical NMR-based diagnostics

  • Huilin Shao,
  • Tae-Jong Yoon,
  • Monty Liong,
  • Ralph Weissleder and
  • Hakho Lee

Beilstein J. Nanotechnol. 2010, 1, 142–154, doi:10.3762/bjnano.1.17

Graphical Abstract
  • ][21][22][23][24][25]. A variety of chemical methods, ranging from traditional wet chemistry to high-temperature thermal decomposition, have been employed to synthesize MNPs. Colloidal iron oxide nanoparticles, which are used as clinical magnetic resonance imaging (MRI) contrast agents, are generally
  • and their representative strategies described below have been shown to be uniquely suited for DMR applications. Cross-linked iron oxide nanoparticles Cross-linked iron oxide (CLIO) nanoparticles have been widely used for DMR applications on account of their excellent stability and biocompatibility [13
  • ][37][38][39][40][41][42]. CLIO nanoparticles contain a superparamagnetic iron oxide core (3–5 nm monocrystalline iron oxide) composed of ferrimagnetic magnetite (Fe3O4) and/or maghemite (γ-Fe2O3). The metallic core is subsequently coated with biocompatible dextran, before being cross-linked with
PDF
Album
Review
Published 16 Dec 2010

Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism

  • Olivier Margeat,
  • Marc Respaud,
  • Catherine Amiens,
  • Pierre Lecante and
  • Bruno Chaudret

Beilstein J. Nanotechnol. 2010, 1, 108–118, doi:10.3762/bjnano.1.13

Graphical Abstract
  • , which corresponds to the signal recorded after exposure of the NPs to air, displays a pre-edge characteristic of an iron oxide [30][31][32]. For the two metallic phases, the shapes of the edge itself are however, quite different. The second shoulder and the maximum of the absorption are shifted toward
PDF
Album
Full Research Paper
Published 03 Dec 2010

Magnetic coupling mechanisms in particle/thin film composite systems

  • Giovanni A. Badini Confalonieri,
  • Philipp Szary,
  • Durgamadhab Mishra,
  • Maria J. Benitez,
  • Mathias Feyen,
  • An Hui Lu,
  • Leonardo Agudo,
  • Gunther Eggeler,
  • Oleg Petracic and
  • Hartmut Zabel

Beilstein J. Nanotechnol. 2010, 1, 101–107, doi:10.3762/bjnano.1.12

Graphical Abstract
  • magnetic force microscopy. Moreover, an exchange bias effect was found, which is likely to be due to oxygen exchange between the iron oxide and the Co layer, and thus forming of an antiferromagnetic CoO layer at the γ-Fe2O3/Co interface. Keywords: exchange bias; iron oxide nanoparticles; nanoparticle self
  • the particle/film interface by oxygen exchange from both the iron oxide and the organic oleic acid to the Co layer. In the event of oxygen exchange between the iron oxide nanoparticles and the Co layer, it is reasonable to expect a change in stoichiometry of the nanoparticles, at least at the surface
  • . Experimental Iron oxide NPs were prepared by thermal decomposition of metal-oleate complexes [40]. As-prepared, particles with mean diameter of 20 nm and 7% size distribution were coated with a ~2 nm thick layer of oleic acid and dissolved in toluene. The NP dispersion, with a concentration of approximately 50
PDF
Album
Full Research Paper
Published 01 Dec 2010
Other Beilstein-Institut Open Science Activities