Search results

Search for "membranes" in Full Text gives 304 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • interesting for intermediate temperature fuel cells operating above ca. 80 °C. At this point, conventional Nafion membranes dry out and lose the ability for proton conduction [9]. Due to their relatively high thermal stability, high ionic conductivity, and low vapor pressure, many ILs can overcome this
  • temperature limit and provide access to proton transporting membranes that can operate in the anhydrous state up to ca. 200 °C [5][10]. However, to use ILs in electrochemical devices such as fuel cells, they need to be immobilized in a viable matrix. Materials resulting from the combination of a support
  • (ii) efficient stabilization of the (highly viscous) liquid phase over extended periods of time. As a result, [BmimSO3H][PTS] is a viable candidate for use in membranes, especially when considering the simple, near quantitative synthesis (Figure 7) and the high thermal stability of the IL (Figure 10
PDF
Album
Full Research Paper
Published 29 Mar 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • porous materials, including membranes, foams, and textiles, or irregular surface geometries, as well as for encapsulating fibers, nanowires, or particles [1]. For example, tailoring the surface energy of the pore walls of a separation membrane without obstructing the pore can enhance the passage of the
  • polymers on nylon membranes to be used in membrane distillation [2]. Conformal film coverage of the membrane microstructure is essential to prevent the wetting of liquid water, a critical property for this application. As seen in Figure 7a and Figure 7b, the overall structure of a nylon membrane before and
  • after coating by iCVD shows little to no change. However, coated membranes can withstand water pressures upwards of 100 kPa before liquid water leakage whereas uncoated membranes are immediately soaked upon contact with water (0 kPa). In this work, the combination of SEM imaging with final device
PDF
Album
Review
Published 28 Mar 2017

Phospholipid arrays on porous polymer coatings generated by micro-contact spotting

  • Sylwia Sekula-Neuner,
  • Monica de Freitas,
  • Lea-Marie Tröster,
  • Tobias Jochum,
  • Pavel A. Levkin,
  • Michael Hirtz and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2017, 8, 715–722, doi:10.3762/bjnano.8.75

Graphical Abstract
  • membranes on flat supports [16][17] and there, interactions occur without any special requirements, like pretreatment with co-activating molecules. For a more complex protein, the lipid/HEMA-EDMA substrate system was also characterized for the binding properties of biotinylated androgen receptor (ARbiot
  • lipid into DOPC carrier. Next, after blocking with 10% BSA and binding of fluorescently labeled STV-Cy3, arrays were washed with PBS and blocked again with 10% BSA to prepare membranes for ARbiot binding. The coating of arrays with labeled STV allowed for direct visualization of the biotin arrays. In
  • of different inks into single arrays within the polymer mesh. Spotting with SPT probes on HEMA-EDMA polymer increases the spatial resolution of lipid pattern as compared to conventional spotting/ink jet printing on 3D substrates, such as PVDF or nitrocellulose membranes, from 50–300 µm in current
PDF
Album
Full Research Paper
Published 27 Mar 2017

Ion beam profiling from the interaction with a freestanding 2D layer

  • Ivan Shorubalko,
  • Kyoungjun Choi,
  • Michael Stiefel and
  • Hyung Gyu Park

Beilstein J. Nanotechnol. 2017, 8, 682–687, doi:10.3762/bjnano.8.73

Graphical Abstract
  • interaction with 2D materials contains information about beam profiles [14][17][18]. Here we show that it is possible to fabricate pores in graphene membranes smaller than the ion beam diameter by carefully tailoring the exposure dose. The pore diameters directly depend on the time for which individual pixels
  • critical steps towards ion beam profiling using this method. Results and Discussion One of the most crucial aspects of ion beam profiling via the direct interaction with suspended graphene is the preparation of the ultraclean graphene membranes. First, graphene was grown on a copper foil using chemical
  • transfer method with copper foil etching in ammonium persulfate was used. After the transfer graphene membranes are cleaned by annealing at 400 °C in hydrogen/argon atmosphere (900 sccm/100 sccm) for 60 min. As a result clean freestanding graphene membranes are obtained [14][15]. As a first step
PDF
Album
Full Research Paper
Published 23 Mar 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • amphiphilic molecules that cover the hydrophobic CNT surface with hydrophilic groups [15]. Functionalization leads not only to the increased water dispersibility of CNTs but also improves their biocompatibility due to enhanced penetration through biological membranes and reduced cytotoxicity [16][17
  • to the diseased tissue. Lipophilic SWNTs can easily penetrate through cellular membranes. CNTs are characterized by high mechanical strength and heat conductibility and their magnetic and optical properties may be the basis of their simultaneous use as drug carriers and sensitizers in photodynamic
  • . Polytetrafluoroethylene (PTFE) membranes (0.2 µm pore size) were purchased from MERCK Millipore. All other reagents used were of analytical grade. Dispersion of SWNTs by non-covalent attachment of supramolecular Congo red 1 mL of aqueous CR solution (2 or 5 mg/mL) was heated for 3 min at 100 °C, slowly cooled to room
PDF
Album
Full Research Paper
Published 16 Mar 2017

Physics, chemistry and biology of functional nanostructures III

  • Anatolie S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 590–591, doi:10.3762/bjnano.8.63

Graphical Abstract
  • tuberculosis bacilli [1], new applications of graphene-based nanostructures [2][3][4], smart nanoparticles with antitumor activity [5], photonic crystals and flexible membranes [6][7] for visualization devices and remote-readout strain gauges. A lot of other unusual applications of functional nanostructures
PDF
Editorial
Published 09 Mar 2017

Liquid permeation and chemical stability of anodic alumina membranes

  • Dmitrii I. Petukhov,
  • Dmitrii A. Buldakov,
  • Alexey A. Tishkin,
  • Alexey V. Lukashin and
  • Andrei A. Eliseev

Beilstein J. Nanotechnol. 2017, 8, 561–570, doi:10.3762/bjnano.8.60

Graphical Abstract
  • , Russia 10.3762/bjnano.8.60 Abstract A study on the chemical stability of anodic alumina membranes and their performance in long-term water and organic solvent permeation experiments is reported. Anodic alumina possesses high stability for both protonic and aprotonic organic solvents. However, serious
  • penetrant solution and increases in basic media. According to 27Al NMR and thermogravimetry results, the degradation of the membranes is associated with the dissolution of water-soluble [Al13O4(OH)24(H2O)12]7+ polyhydroxocomplexes and their further redeposition in the form of [Al(OH)4]−, resulting in
  • membranes; membrane stability; microfiltration membranes; ultrafiltration membranes; Introduction Porous anodic aluminum oxide (AAO), developed as a protective coating, has received close attention of the membrane community due to its unusual porous structure represented by piercing cylindrical channels
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2017

Nanostructured carbon materials decorated with organophosphorus moieties: synthesis and application

  • Giacomo Biagiotti,
  • Vittoria Langè,
  • Cristina Ligi,
  • Stefano Caporali,
  • Maurizio Muniz-Miranda,
  • Anna Flis,
  • K. Michał Pietrusiewicz,
  • Giacomo Ghini,
  • Alberto Brandi and
  • Stefano Cicchi

Beilstein J. Nanotechnol. 2017, 8, 485–493, doi:10.3762/bjnano.8.52

Graphical Abstract
  • nitrite was added and the mixture kept at 80 °C for 24 h. The ox-MWCNTs derivative 6 was isolated through filtration over a 0.2 µm PTFE membranes followed by repeated washings with different solvents to remove excess reagents, while the GPs 7 was recovered after several cycles of centrifugation and
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2017

Innovations from the “ivory tower”: Wilhelm Barthlott and the paradigm shift in surface science

  • Christoph Neinhuis

Beilstein J. Nanotechnol. 2017, 8, 394–402, doi:10.3762/bjnano.8.41

Graphical Abstract
  • door in a building separating two rooms, down to a layer of atoms between a bulk material and its environment. Borders are inevitably necessary as can be seen from the compartmentation of a cell by membranes, essential for the function of all living organisms from archaea to the majestic blue whale
  • Selectivity is another important feature of borders (Figure 6). There are hardly any impenetrable borders as such. Therefore, a certain amount of exchange will always take place. Selectivity may be related to the exchange of matter, e.g., semipermeable membranes of cells and organelles, to the exchange of
PDF
Album
Commentary
Published 08 Feb 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80
  • nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices. Keywords: fabrication
  • membranes with varying nanoparticle concentrations and different grating properties. Here, we present detailed results of the fabrication and optical properties of these flexible photonic crystals membranes with nanoparticulate high-index layers that allow for strain values of up to 20%. We fabricate these
PDF
Album
Full Research Paper
Published 20 Jan 2017

Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

  • Marco Salerno,
  • Amirreza Shayganpour,
  • Barbara Salis and
  • Silvia Dante

Beilstein J. Nanotechnol. 2017, 8, 74–81, doi:10.3762/bjnano.8.8

Graphical Abstract
  • during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view
  • living cells, we decided to test the tAPA–Au SERS-active substrates on SLBs in phosphate-buffered saline (PBS) buffer solution, which provide an excellent model system to mimic the native cellular membranes [22]. In the present work, the fabrication and modification of tAPA aiming at its exploitation as
  • structure and Raman spectra of lipids in powder form are shown in Figure 3. The molecules of choice, i.e., POPC and POPS, are two glycerophospholipids largely present in real cellular membranes. In particular, we prepared a mixture of POPC and POPS suspended in PBS with the molar ratio of 8:2, in order to
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2017

Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

  • Gyeong-Hyeon Gwak,
  • Istvan Kocsis,
  • Yves-Marie Legrand,
  • Mihail Barboiu and
  • Jae-Min Oh

Beilstein J. Nanotechnol. 2016, 7, 1928–1935, doi:10.3762/bjnano.7.184

Graphical Abstract
  • Gyeong-Hyeon Gwak Istvan Kocsis Yves-Marie Legrand Mihail Barboiu Jae-Min Oh Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo, 26493, Republic of Korea, Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes
  • )polytetrahydrofuran [10]. These G4 membranes showed potential in Na+/K+ artificial ion channels. Inspired by the above reports claiming that i) intermolecular interactions of biomolecules are strongly affected by the confined geometry of layered clays and that ii) guanosine derivatives form various supramolecular
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2016

Nanoanalytics for materials science

  • Thilo Glatzel and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1674–1675, doi:10.3762/bjnano.7.159

Graphical Abstract
  • applied to investigate magnetite nanoparticles by Kalska-Szostka et al. [4]. TEM was also used in the work of Gutsch et al. who developed a novel energy-filtered transmission electron microscopy (EFTEM) approach using ultrathin TEM membranes [5]. With this method, they were able to accurately study the
PDF
Editorial
Published 10 Nov 2016

Development of adsorptive membranes by confinement of activated biochar into electrospun nanofibers

  • Mehrdad Taheran,
  • Mitra Naghdi,
  • Satinder K. Brar,
  • Emile Knystautas,
  • Mausam Verma,
  • Rao. Y. Surampalli and
  • Jose. R. Valero

Beilstein J. Nanotechnol. 2016, 7, 1556–1563, doi:10.3762/bjnano.7.149

Graphical Abstract
  • Solutions Inc., 2300, rue Jean-Perrin, Québec, Québec G2C 1T9, Canada Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, USA 10.3762/bjnano.7.149 Abstract Adsorptive membranes have many applications in removal of contaminants, such as heavy
  • study, a series of polyacrylonitrile (PAN)/activated biochar nanofibrous membranes (NFMs) with different loadings of biochar (0–2%, w/w) were fabricated using electrospinning. The morphology and structure of fabricated membranes was investigated by scanning electron microscopy, Fourier transform
  • chlortetracycline showed that, under environmentally relevant concentrations, the fabricated adsorptive NFMs had a potential for removal of these types of emerging contaminants from water and wastewaters. Keywords: adsorptive membrane; biochar; chlortetracycline; nanofibers; Introduction Adsorptive membranes have
PDF
Album
Full Research Paper
Published 01 Nov 2016

The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube–silicon solar cells

  • Benedikt W. Stolz,
  • Daniel D. Tune and
  • Benjamin S. Flavel

Beilstein J. Nanotechnol. 2016, 7, 1486–1491, doi:10.3762/bjnano.7.141

Graphical Abstract
  • films as captured on the filtration membranes, and the same films after DSA. As well as the obvious alignment of the nanotubes in the direction of shear, the porosity of the film has also been reduced due to better packing of the nanotubes in their aligned configuration. The films are now also visibly
  • ) is at a minimum for the thinnest films and maximum for the thickest films. It was observed that the upper side of the nanotube films on the filtration membranes became visibly more reflective after DSA and although the films were deposited with the reflective side down, it was thought that perhaps
  • supernatant by vacuum filtration onto mixed cellulose ester (MCE) membranes (0.45 μm, HAWP, Merck Millipore) and rinsed thoroughly with copious DI water as per Wu et al. [46] and Hu et al. [47]. For the DSA preparation, a cylindrical Teflon stir bar (8 × 30 mm) was used as the aligner. The membranes were
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2016

An efficient recyclable magnetic material for the selective removal of organic pollutants

  • Clément Monteil,
  • Nathalie Bar,
  • Agnès Bee and
  • Didier Villemin

Beilstein J. Nanotechnol. 2016, 7, 1447–1453, doi:10.3762/bjnano.7.136

Graphical Abstract
  • hazard for human health, even at low concentrations [1][2][3]. Many technologies such as photodegradation, biodegradation, the Fenton process, or extraction by liquid membranes have been developed to eliminate these compounds in wastewater [4][5][6]. Among them, adsorption-based methods are extensively
  • easy and reproducible single-step process is particularly designed for water treatment. Moreover, the PEIP polymer is perfectly adaptable for a future use in other systems such as microbeads or membranes. Synthesis of NP-PEIP. The number of phosphonates depends on the number of equivalents of
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2016

Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

  • Tudor Braniste,
  • Ion Tiginyanu,
  • Tibor Horvath,
  • Simion Raevschi,
  • Serghei Cebotari,
  • Marco Lux,
  • Axel Haverich and
  • Andres Hilfiker

Beilstein J. Nanotechnol. 2016, 7, 1330–1337, doi:10.3762/bjnano.7.124

Graphical Abstract
  • multifunctional and hybrid “smart materials” for biological and medical applications is of paramount importance [1]. Biomaterial research is closely associated with the development of chemical/biochemical sensors, hydrogels, membranes, and artificial organs, and is utilized in applications such as the recognition
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2016

On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles

  • Claudia Messerschmidt,
  • Daniel Hofmann,
  • Anja Kroeger,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2016, 7, 1296–1311, doi:10.3762/bjnano.7.121

Graphical Abstract
  • lipid membranes and enter cells [8][9][10]. For example, Mu et al. found uptake of SiNPs (14 nm diameter) even in cells that were kept at 4 °C, a temperature at which active processes are conceived to be significantly suppressed [9]. In subsequent TEM analysis they observed particles freely in the
  • interaction of SiNPs with cellular membranes and membrane proteins severely influences cell function and integrity. Hence, we exemplarily incubated HeLa cells for as long as 24 h using high particle concentrations of 3400 µg·mL−1. The subsequent TEM examination showed only cell fragments for all three
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2016

Functional diversity of resilin in Arthropoda

  • Jan Michels,
  • Esther Appel and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2016, 7, 1241–1259, doi:10.3762/bjnano.7.115

Graphical Abstract
  • dragonfly flight muscles and basal wing joints of locusts (as already mentioned above) [5]. In the following, some selected representative structures and systems with large proportions of resilin are highlighted, and their functions are described. Arthrodial membranes Arthrodial membranes are cuticle areas
  • that are typically thin, non-sclerotised and very flexible. Such membranes often are multifunctional units. The soft cuticles of caterpillars, for example, have a combination of both a protective and a locomotory role, which is reflected in their ultrastructural architecture [58]. The main functions of
  • arthrodial membranes are to connect sclerotised exoskeleton elements and allow relative movement of these elements and to extend whenever an increase in volume of the body is necessary [59][60]. In addition, some membranes are armoured with miniature protuberances on their surfaces and have a defence
PDF
Album
Review
Published 01 Sep 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • produced by using electrospinning from solutions of polymers based on polyacrylonitrile (PAN) and N,N-dimethylformamide (DMF) with ceramic nanoparticles of SiO2/TiO2/Bi2O3. PAN/SiO2 composite nanofibres are used as membranes in the production of air filters, gas absorbents and new types of lithium-ion
PDF
Album
Full Research Paper
Published 05 Aug 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties
  • magnitude. Moreover, the abovementioned features of nanoparticles and the possibility to penetrate cell membranes as well as coupling with drugs create a very attractive vision of future applications not only in diagnosis but also to monitor physiology and therapeutic progress. There have been numerous
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • , Germany 10.3762/bjnano.7.80 Abstract Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4
  • -isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the
  • molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

  • Majid K. Abyaneh,
  • Pietro Parisse and
  • Loredana Casalis

Beilstein J. Nanotechnol. 2016, 7, 809–816, doi:10.3762/bjnano.7.72

Graphical Abstract
  • solutions were deposited on substrates (silicon wafers, glass or Si3N4 membranes) through spin-coating. Finally, these films were kept under a DC deuterium 30 W UV lamp for 24 h. The UV lamp is operated at 310 mA and 72 V. A UV-enhanced aluminium flat mirror from Thorlabs Inc. was used to divert the UV beam
PDF
Album
Full Research Paper
Published 06 Jun 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • their diameter, that is, NPs are particles between 1 and 100 nanometers in size. Generally, the toxicity of NPs is based on the following mechanisms: oxidative stress, disruption of cell membranes, and unknown effects when they enter organs (Table 1). For instance, gold NPs can cause serious damage in
PDF
Album
Review
Published 06 May 2016

Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

  • M. Fátima Barroso,
  • M. Alejandra Luna,
  • Juan S. Flores Tabares,
  • Cristina Delerue-Matos,
  • N. Mariano Correa,
  • Fernando Moyano and
  • Patricia G. Molina

Beilstein J. Nanotechnol. 2016, 7, 655–663, doi:10.3762/bjnano.7.58

Graphical Abstract
  • hydrophobic bilayer as well as water-soluble substances. These structures are the best mimetic agents of biological membranes and represent the environment in which many proteins and enzymes show activity [1][2]. The advantages that the vesicles have over synthetic materials are: lack of toxicity
PDF
Album
Full Research Paper
Published 02 May 2016
Other Beilstein-Institut Open Science Activities