Search results

Search for "nanoemulsions" in Full Text gives 21 result(s) in Beilstein Journal of Nanotechnology.

Beyond the shell: exploring polymer–lipid interfaces in core–shell nanofibers to carry hyaluronic acid and β-caryophyllene

  • Aline Tavares da Silva Barreto,
  • Francisco Alexandrino-Júnior,
  • Bráulio Soares Arcanjo,
  • Paulo Henrique de Souza Picciani and
  • Kattya Gyselle de Holanda e Silva

Beilstein J. Nanotechnol. 2025, 16, 2015–2033, doi:10.3762/bjnano.16.139

Graphical Abstract
  • for effective pharmaceutical use, βCp is often formulated within lipid liquid dispersions, such as nanoemulsions, to enhance its stability and improve therapeutic properties [35][36][37][38]. While lipid nanosystems offer undeniable advances for the delivery of active compounds, their inherent liquid
  • administration via dressings made of biocompatible polymers containing lipid nanosystems [41][42][43]. Numerous researchers have successfully encapsulated nanoemulsions into nanofibers for diverse applications, including studies by Kaur et al. (2024) showing superior wound healing with bakuchiol nanoemulsion
  • unimodal distribution with a polydispersity index (PDI) range of 0.218. Most of the formed nanoemulsions are small in size and well distributed (Figure 1). The most favorable processing conditions for obtaining uniform fibers – free of surface roughness and with fewer beads – were determined based on
PDF
Album
Full Research Paper
Published 12 Nov 2025

Targeting the vector of arboviruses Aedes aegypti with nanoemulsions based on essential oils: a review with focus on larvicidal and repellent properties

  • Laryssa Ferreira do Nascimento Silva,
  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Mariana Alice Gonzaga Gabú,
  • Maria Cecilia Queiroga dos Santos,
  • Daiane Rodrigues dos Santos,
  • Mylena Lemos dos Santos,
  • Gabriel Bezerra Faierstein,
  • Rosângela Maria Rodrigues Barbosa and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2025, 16, 1894–1913, doi:10.3762/bjnano.16.132

Graphical Abstract
  • release, and protection against degradation. Nanoemulsions are colloidal systems with droplets of 20 to 500 nm, which improve the dispersion of the compounds, protect their active properties, and enhance their efficacy. This review addresses the potential of nanoemulsions as efficient carriers of EOs, and
  • how this approach could emerge as ecological alternatives to synthetic insecticides. Herein, the focus was kept on targeting larvicidal and repellent activities against Ae. aegypti. For that, 23 studies were analyzed, which demonstrated a significant increase in the efficacy of nanoemulsions with EOs
  • nanoemulsions are discussed. In addition, this review highlights challenges and perspectives on pharmaceutical nanotechnology towards nanoemulsions as safe, effective, and eco-friendly tools for controlling Ae. Aegypti. Keywords: Aedes aegypti; arboviruses; mosquito vector; nanoemulsion; nanotechnology
PDF
Album
Review
Published 28 Oct 2025

Phytol-loaded soybean oil nanoemulsion as a promising alternative against Leishmania amazonensis

  • Victória Louise Pinto Freire,
  • Mariana Farias Alves-Silva,
  • Johny W. de Freitas Oliveira,
  • Matheus de Freitas Fernandes-Pedrosa,
  • Alianda Maira Cornélio,
  • Marcelo de Souza-Silva,
  • Thayse Silva Medeiros and
  • Arnóbio Antônio da Silva Junior

Beilstein J. Nanotechnol. 2025, 16, 1826–1836, doi:10.3762/bjnano.16.126

Graphical Abstract
  • attracted attention due to their broad biological activities. To increase their solubility, stability, and cell delivery, nanotechnology-based systems, such as nanoemulsions (NEs), represent a promising approach. In this study, soybean oil nanoemulsions loaded with phytol (PHYT-NE) were developed using the
  • encapsulate bioactive molecules have proven effective against trypanosomatids [20][21] especially Leishmania spp. [22][23]. Among these systems, nanoemulsions (NEs) are one of the most common types. They are colloidal dispersions of two immiscible liquids – typically oil and water – stabilized by emulsifying
  • via the low-energy emulsification method, as a novel potential pharmacological alternative for the treatment of cutaneous leishmaniasis. Results Phytol-loaded soybean-oil nanoemulsion Blank-NE and soybean oil nanoemulsions loaded with phytol (PHYT-NE) were successfully prepared using the phase
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2025

Exploring the potential of polymers: advancements in oral nanocarrier technology

  • Rousilândia de Araujo Silva,
  • Igor Eduardo Silva Arruda,
  • Luise Lopes Chaves,
  • Mônica Felts de La Roca Soares and
  • Jose Lamartine Soares Sobrinho

Beilstein J. Nanotechnol. 2025, 16, 1751–1793, doi:10.3762/bjnano.16.122

Graphical Abstract
PDF
Album
Review
Published 10 Oct 2025

Multifunctional anionic nanoemulsion with linseed oil and lecithin: a preliminary approach for dry eye disease

  • Niédja Fittipaldi Vasconcelos,
  • Almerinda Agrelli,
  • Rayane Cristine Santos da Silva,
  • Carina Lucena Mendes-Marques,
  • Isabel Renata de Souza Arruda,
  • Priscilla Stela Santana de Oliveira,
  • Mércia Liane de Oliveira and
  • Giovanna Machado

Beilstein J. Nanotechnol. 2025, 16, 1711–1733, doi:10.3762/bjnano.16.120

Graphical Abstract
  • required to produce nanoemulsions with a uniform particle size and incorporated a co-surfactant to enhance the stability of the nanoformulation. A straightforward method was proposed, involving the dilution of the preformulation in an ophthalmic vehicle, followed by homogenization through ultrasonication
  • reduce DED symptoms. ONSs include nanoparticles such as nanoemulsions, liposomes, nanomicelles, and dendrimers, which can serve as carriers for both lipophilic and hydrophilic drugs. This allows for smaller doses and more precise drug targeting [16]. Nanoemulsions (NEs) show promise in improving drug
  • use can be limited by stability issues like drug leakage, lipid oxidation, and vesicle aggregation, which depend on drug properties and bilayer composition [54]. These challenges are significant regarding chronic topical use. Conversely, micellar nanoemulsions, such as those in this study, offer
PDF
Album
Supp Info
Full Research Paper
Published 02 Oct 2025

Acrocomia aculeata oil-loaded nanoemulsion: development, anti-inflammatory properties, and cytotoxicity evaluation

  • Verónica Bautista-Robles,
  • Hady Keita,
  • Edgar Julián Paredes Gamero,
  • Layna Tayná Brito Leite,
  • Jessica de Araújo Isaías Muller,
  • Mônica Cristina Toffoli Kadri,
  • Ariadna Lafourcade Prada and
  • Jesús Rafael Rodríguez Amado

Beilstein J. Nanotechnol. 2025, 16, 1277–1288, doi:10.3762/bjnano.16.93

Graphical Abstract
  • , nutraceutical, and industrial applications. However, due to the chemical and physicochemical characteristics as well as the solubility and stability of this oil, it was decided to make a nanoemulsion to enhance its already known therapeutic benefits. Nanoemulsions are nanoemulsified systems, either oil-in-water
  • emulsified systems loaded with plant extracts have better pharmacological activity than extracts when used naturally [22]. For example, plant oil-loaded nanoemulsions exhibit high water solubility, improved permeability, and enhanced bioavailability [23]. This contrasts with the limited solubility and poor
  • ]. Despite these variations, the compositional profiles remain comparable, underscoring the distinctive chemical characteristics of the oil studied. Preparation of nanoemulsions, required hydrophilic–lipophilic balance, droplet size, zeta potential, and shelf stability The development of a nanoemulsion
PDF
Album
Full Research Paper
Published 06 Aug 2025

Fabrication of metal complex phthalocyanine and porphyrin nanoparticle aqueous colloids by pulsed laser fragmentation in liquid and their potential application to a photosensitizer for photodynamic therapy

  • Taisei Himeda,
  • Risako Kunitomi,
  • Ryosuke Nabeya,
  • Tamotsu Zako and
  • Tsuyoshi Asahi

Beilstein J. Nanotechnol. 2025, 16, 1088–1096, doi:10.3762/bjnano.16.80

Graphical Abstract
  • nanoparticles and nanomicelle encapsulation have been used to disperse them in water [2][3][4][5][6][7]. For example, AlClPc has been loaded into nanoemulsions using castor oil and Cremophor ELP® [5]. ZnPc was dispersed in unilamellar liposomes by a solvent exchange method [7][8], and its photocytotoxicity
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2025

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • concentration in the brain by a factor of 6.15 compared to the oral clozapine tablet [109]. Nanoemulsions Emulsions are colloidal systems consisting of two immiscible liquid phases where one phase is dispersed in the other. Nanoemulsions can be prepared via low-energy or high-energy methods, including
  • microfluidics and high-shear-force homogenization [110]. As DDS, nanoemulsions can be reservoirs for encapsulating hydrophobic substances [111]. Moreover, emulsions of emulsions or double emulsions can be prepared by dispersing the droplets of primary emulsion into another liquid phase. Double emulsions can be
  • a reservoir for hydrophilic substances. They decrease bioactive degradation and are also used as DDSs for the nasal administration route [102]. As an example of nanoemulsions for intranasal drug delivery, Gaba et al. developed vitamin E/naringenin nanoemulsions to treat Parkinson’s disease. The in
PDF
Album
Review
Published 12 Nov 2024

When nanomedicines meet tropical diseases

  • Eder Lilia Romero,
  • Katrien Van Bocxlaer and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 830–832, doi:10.3762/bjnano.15.69

Graphical Abstract
  • important contribution to this thematic issue focused on development of nanoemulsions containing plant-based insecticides for vector control. In this work, Duarte and colleagues developed and characterized nanoemulsions encapsulating monoterpenes, which exhibited significant lethality against third-instar
PDF
Editorial
Published 08 Jul 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • formulations, specifically nanoemulsions, has emerged as a prospective strategy to surmount these obstacles. In this study, we developed and characterized nanoemulsions based on cymene and myrcene and assessed their toxicity both in vitro using human keratinocytes (HaCAT) cells and in an in vivo model
  • involving Galleria mellonella larvae. Additionally, we investigated the insecticidal efficacy of monoterpenes against the mosquito Aedes aegypti, the primary dengue vector, via larval bioassay. Employing a low-energy approach, we successfully generated nanoemulsions. The cymene-based nanoemulsion exhibited
  • a hydrodynamic diameter of approximately 98 nm and a zeta potential of −25 mV. The myrcene-based nanoemulsion displayed a hydrodynamic diameter of 118 nm and a zeta potential of −20 mV. Notably, both nanoemulsions demonstrated stability over 60 days, accompanied by controlled release properties and
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • been employed to produce nanoformulations of drugs for endowing a better therapeutic effect. The nanoformulations for drug delivery can be designed using nanocarrier systems, including organic materials (liposomes, nanoemulsions, nanomicelles, and nanofibers) and inorganic nanoparticles (gold, silver
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Curcumin-loaded nanostructured systems for treatment of leishmaniasis: a review

  • Douglas Dourado,
  • Thayse Silva Medeiros,
  • Éverton do Nascimento Alencar,
  • Edijane Matos Sales and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 37–50, doi:10.3762/bjnano.15.4

Graphical Abstract
  • solubility, (ii) poor gastrointestinal absorption, (iii) high rates of metabolism, (iv) inactivity of metabolic products, and (v) rapid elimination and clearance [15][16]. To get around these several limitations, nanotechnological systems such as nanoemulsions [17], microemulsions [18], self-nanoemulsifying
  • after 21 days, while the group treated with Pentostan healed after 28 days. Moraes and colleagues prepared nanoemulsions (NE) of andiroba oil (Carapa guianensis Aublet, anoandi) and copaiba oil (Copaifera sp. Linnaeus, nanocopa) and tested their effects against L. infantum and L. amazonensis
  • systems made of an isotropic blend of oils, surfactants, and co-surfactants or co-solvents [76]. These spontaneously form O/W nanoemulsions (≤200 nm) in aqueous media (generally in a physiological media) [77][78]. The SNEDDSs have been successfully used to carry molecules with biopharmaceutical
PDF
Album
Review
Published 04 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • ] reported that nanoemulsions with carvacrol orally administered were able to reduce worm burden and eggs in feces more than PZQ in the prepatent period (21 days post-infection). This impressive result shows that this nanoformulation is more efficient in juvenile forms. The author also suggests that the
  • nanoparticles, nanostructure lipid carriers, nanoemulsions, nanocrystals, solid lipid nanoparticles, polymeric nanoparticles, noisomes, and others. Percentage of administration routes used in the 65 selected articles. The routes were: oral, subcutaneous, or intramuscular. In some cases, this information was
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli

  • Lany S. Araujo-Yépez,
  • Juan O. Tigrero-Salas,
  • Vicente A. Delgado-Rodríguez,
  • Vladimir A. Aguirre-Yela and
  • Josué N. Villota-Méndez

Beilstein J. Nanotechnol. 2023, 14, 1106–1115, doi:10.3762/bjnano.14.91

Graphical Abstract
  • development of new nanoinsecticides to combat pests in a more productive, cost-effective, and eco-friendly way [8][12]. Nanoscale agricultural products are developed using nanotechnology, such as nanopesticides, nanoinsecticides, nanoemulsions, and nanoparticles, to reduce the use of toxic chemicals [14
  • oil-laden nanoemulsions had insecticidal activity against Sitophilus oryzae in rice crops [52]. Conclusion Nanocomposites with a nanomicellar structure were synthesized. They are composed of an aqueous phase of elemental sulfur nanoparticles that agglomerate into clusters of smaller and larger
PDF
Album
Full Research Paper
Published 17 Nov 2023

Nanostructured lipid carriers containing benznidazole: physicochemical, biopharmaceutical and cellular in vitro studies

  • Giuliana Muraca,
  • María Esperanza Ruiz,
  • Rocío C. Gambaro,
  • Sebastián Scioli-Montoto,
  • María Laura Sbaraglini,
  • Gisel Padula,
  • José Sebastián Cisneros,
  • Cecilia Yamil Chain,
  • Vera A. Álvarez,
  • Cristián Huck-Iriart,
  • Guillermo R. Castro,
  • María Belén Piñero,
  • Matias Ildebrando Marchetto,
  • Catalina Alba Soto,
  • Germán A. Islan and
  • Alan Talevi

Beilstein J. Nanotechnol. 2023, 14, 804–818, doi:10.3762/bjnano.14.66

Graphical Abstract
  • efficiently. Many developments have been made in the past years resulting in lipid formulations such as liposomes, solid lipid nanoparticles (SLNs), and nanoemulsions, which increased the apparent solubility of BNZ and its efficacy against parasites [17]. Remarkably, oil-in-water nanoemulsions improved the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • Santiago Grijalvo Carlos Rodriguez-Abreu CIBER-BBN, ISCIII, Jordi Girona 18–26, 08034 Barcelona, Spain Instituto de Quimica Avanzada de Cataluña (IQAC), CSIC, Jordi Girona 18–26, 08034 Barcelona, Spain 10.3762/bjnano.14.29 Abstract The formulation of nanoemulsions by low-energy strategies
  • , particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical
  • , nanoparticle concentration, surface functionalization, and the type of polymers that can be processed. Keywords: ethyl cellulose; nanoemulsions; nanomedicine; phase inversion composition (PIC) method; PLGA; polymer nanoparticles; polyuria; polyurethane; surfactants; Review 1 Introduction The field of
PDF
Album
Review
Published 13 Mar 2023

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • introduced into systems whose purpose is to provide the expected concentration in the treated tissue for the desired time period. The most frequently studied and described are liposomes [60][61], micelles [60][62], microparticles [63][64][65], nanoparticles [66][67], micro- [68][69], and nanoemulsions [70
PDF
Album
Review
Published 24 Oct 2022

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • metabolism, low bioavailability, and fast elimination of the molecule. Considering this, the present work reviews the use of CUR-based nanosystems as anticancer agents, including conventional nanosystems (i.e., liposomes, nanoemulsions, nanocrystals, nanosuspensions, polymeric nanoparticles) and nanosystems
  • anticancer activity, including liposomes, nanoemulsions, nanocrystals, nanosuspensions, and polymeric nanoparticles, as well as dual effect nanosystems which respond to external stimuli (mainly magnetic nanoparticles and photodynamic therapy), in addition to internal ones. Furthermore, key design factors
  • ]. However, both authors only carried out release studies at pH 7.4, so the question of the behavior of LPN at an acid pH remains. Nanoemulsions. Nanoemulsions are composed of an oil phase in a continuous aqueous phase, with average diameters <200 nm [88][89]. The oil and aqueous phases contact each other
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • (conventional and echogenic), niosomes, nanoemulsions, polymeric nanoparticles, chitosan nanocapsules, dendrimers, hydrogels, nanogels, gold nanoparticles, titania nanostructures, carbon nanostructures, mesoporous silica nanoparticles, fuel-free nano/micromotors. Keywords: smart nanomaterials; sonodynamic
  • efficiency [1]. To overcome the limitations and drawbacks of conventional drugs, such as uncontrolled release and nonspecific biodistribution, drug delivery systems (DDS) such as liposomes, polymeric nanoparticles, or nanoemulsions (NEs) have been extensively explored. However, even conventional DDS often
  • less-discussed US-responsive nanomaterials in addition to the conventional nanomaterials (i.e., microbubbles, micelles, liposomes, and nanoemulsions) is another distinguishable feature of this review. Ultrasound-responsive nanomaterials are discussed in terms of their background, structure, preparation
PDF
Album
Review
Published 11 Aug 2021

Phase inversion-based nanoemulsions of medium chain triglyceride as potential drug delivery system for parenteral applications

  • Eike Folker Busmann,
  • Dailén García Martínez,
  • Henrike Lucas and
  • Karsten Mäder

Beilstein J. Nanotechnol. 2020, 11, 213–224, doi:10.3762/bjnano.11.16

Graphical Abstract
  • Eike Folker Busmann Dailen Garcia Martinez Henrike Lucas Karsten Mader Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany 10.3762/bjnano.11.16 Abstract Lipid nanoemulsions are attractive drug delivery systems for lipophilic drugs. To produce nanoemulsions
  • with droplets of very small diameter (<100 nm), we investigated thermotropic phase transitions as an alternative to the standard procedure of high-pressure homogenization. Employing shock dilution with ice-cold water during the phase inversion gives the opportunity to produce nanoemulsions without any
  • polydispersity index distributions and uncharged surfaces. Nanoemulsions with particles of 50 and 100 nm in diameter showed very little toxicity to fibroblast cells in vitro. An unusual, exponential-like nonlinear increase in osmolality was observed with increasing concentration of the nonionic surfactant
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2020

Heavy-metal detectors based on modified ferrite nanoparticles

  • Urszula Klekotka,
  • Ewelina Wińska,
  • Elżbieta Zambrzycka-Szelewa,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2018, 9, 762–770, doi:10.3762/bjnano.9.69

Graphical Abstract
  • life, detect contaminants [5] and receive intelligent packaging [6]. A lot of research is focused on the reduction of the amount of fat in the products through the use of nanotechnological solutions. The idea to use fat in the forms of nanoemulsions, e.g., in cream or mayonnaise, became very popular in
PDF
Album
Full Research Paper
Published 28 Feb 2018
Other Beilstein-Institut Open Science Activities