Search results

Search for "nanofilms" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

A wearable nanoscale heart sound sensor based on P(VDF-TrFE)/ZnO/GR and its application in cardiac disease detection

  • Yi Luo,
  • Jian Liu,
  • Jiachang Zhang,
  • Yu Xiao,
  • Ying Wu and
  • Zhidong Zhao

Beilstein J. Nanotechnol. 2023, 14, 819–833, doi:10.3762/bjnano.14.67

Graphical Abstract
  • University, Hangzhou 310018, China School of Cyberspace Security, Hangzhou DIANZI University, Hangzhou 310018, China 10.3762/bjnano.14.67 Abstract This paper describes a method for preparing flexible composite piezoelectric nanofilms of P(VDF-TrFE)/ZnO/graphene using a high-voltage electrospinning method
  • flexible piezoelectric thin film heart sound sensor was developed, and a heart sound detection and classification system was built based on this sensor. Zinc oxide (ZnO) and graphene (GR) fillers were added to the P(VDF-TrFE) matrix, and P(VDF-TrFE)/ZnO/GR composite piezoelectric nanofilms were prepared
  • this paper, composite piezoelectric nanofilms were prepared using a high-voltage electrospinning process. This experimental setup comprises three main components, namely a high-voltage DC power supply, micro-pump spinnerets, and a fiber collector [18]. The piezoelectric nanofilms produced using this
PDF
Album
Full Research Paper
Published 31 Jul 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • been carried out on the coating of unaltered textile substrates with hybrid MNP-polymer films for antimicrobial applications. In a previous work [47][48], we presented an innovative one-pot, one-step photoinduced synthesis to generate silver and gold-polymer nanofilms on a glass substrate. The kinetic
PDF
Album
Full Research Paper
Published 12 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • materials; molecular dynamics; nanocomposites; nanofilms; spintronics; Introduction The analysis of phase transitions and related critical phenomena in condensed media is a complex, time-consuming, and often a high-cost process from a technological point of view [1][2][3]. On the one hand, this is due to
  • that are influenced and corrected in the manufacturing process). The previously conducted studies considered the influence of sample parameters (e.g., temperature of the substrate on which the magnetron sputtering of nanofilms takes place, the intensity and deposition direction) on the final properties
  • at modeling the magnetic properties of the nanomaterial heterostructure under study. In Figure 1, the block of modeling magnetic properties is highlighted by a red dashed line. As noted earlier, the formed nanofilms have a nonideal structure. Consequently, the influence of the real structure and
PDF
Album
Full Research Paper
Published 04 Jan 2023

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • NPs (or nanofilms), enabling a large area coverage with tiny and well-distributed Ag NPs, thereby efficiently exploiting their EM enhancement. Subsequently, both EM and charge-transfer (CT) enhancement contribute to the final SERS amplification [48], which is the reason for the use of ZnO
PDF
Album
Review
Published 27 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • . Micro- and nanostructures including microspheres, NPs, nanofibers, nanotubes, and nanofilms have been designed to construct new scaffolds and or incorporated into the hydrogel network to provide a controlled release or enhanced mechanical characteristics. Many of these substructures are widely used for
  • nature. They are constructed as NPs, nanofibers, nanocrystals, nanotubes, and nanofilms by high-tech methods of photolithography, electrospinning, nanoimprinting, and phase separation. Due to the hierarchical structure of articular cartilage ECM, there is considerable enthusiasm regarding the use of
  • are usually used as fillers in combination with other compounds in the construction of nanocomposites. However, there are a few reports about the fabrication of nanofilms of vertically aligned (VA) CNTs for the 2D culture of chondrocytes. To simultaneously introduce polar functional groups (COH, COOH
PDF
Album
Review
Published 11 Apr 2022

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • geometry. Plugotarenko et al. employed sol–gel method to prepare SiO2·SnOx·CuOy nanofilms from a tetraethoxysilane (TEOS) alcohol solution modified by metal salts and applied the samples for NO2 sensing [50]. The SiO2·SnOx·CuOy films annealed at 500 °C exhibited a sample surface consisting of crater-like
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Piezotronic effect in AlGaN/AlN/GaN heterojunction nanowires used as a flexible strain sensor

  • Jianqi Dong,
  • Liang Chen,
  • Yuqing Yang and
  • Xingfu Wang

Beilstein J. Nanotechnol. 2020, 11, 1847–1853, doi:10.3762/bjnano.11.166

Graphical Abstract
  • the study of the piezotronic effect than nanofilms or bulk materials since the smaller physical size and larger surface-to-volume ratio of 1D NWs yields superior mechanical properties [4][10]. In addition, 1D semiconductor NWs can increase the electron mobility and achieve the confinement of light
PDF
Album
Full Research Paper
Published 10 Dec 2020

Molecular dynamics modeling of the influence forming process parameters on the structure and morphology of a superconducting spin valve

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Vladimir Boian,
  • Roman Morari and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2020, 11, 1776–1788, doi:10.3762/bjnano.11.160

Graphical Abstract
  • niobium (in the real deposited structures niobium layers have crystalline structure [18]) serves as the substrate and the basis for the vacuum deposition of subsequent nanofilms. The substrate is placed in the lower region of the computational cell; its extreme layer is fixed to prevent chaotic movement
  • deposited in the third stage. As a result, three nanofilms with a thickness of 1.5 nm, 8.0 nm and 2.5 nm were formed. The duration of the layer deposition process under normal conditions was chosen according to the desired thickness and was 0.2 ns, 0.6 ns, and 0.4 ns, respectively. An image of a multilayer
  • number in Figure 6 correlates with the structure of the nanomaterial shown in Figure 5. The niobium substrate has a parameter value close to 8, which indicates its crystalline structure. The cobalt nanofilms are characterized by a higher coordination number in the range of 10–11. This value does not
PDF
Album
Full Research Paper
Published 24 Nov 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • a high photocatalytic activity because of a better charge separation [16][17][18][19][20][21][22]. Liu et al. [23] prepared CuO/ZnO nanocomposites by homogeneous coprecipitation and used them for the photocatalytic degradation of methyl orange. Wei et al. [24] fabricated CuO/ZnO composite nanofilms
PDF
Album
Full Research Paper
Published 15 Apr 2020

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • nanofilms was evaluated by AFAM [22]. Periodical stiffness variations caused by molecular chains of copolymers could be observed by AFAM even when covered by soft layers [23]. In this work, using AFAM, we aimed to study cell responses on stiffness and topography changes patterned onto a substrate. We used
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • application of nanoarchitectonics strategies. In the following sections, sensor designs are discussed on the basis of nanoarchitectonic structural motifs, such as nanoporous structures and extremely thin nanofilms as well as the highly enhanced molecular sensing capability at interfacial structures. Porous
PDF
Album
Review
Published 16 Oct 2019

Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides

  • Guochao Shi,
  • Mingli Wang,
  • Yanying Zhu,
  • Yuhong Wang,
  • Xiaoya Yan,
  • Xin Sun,
  • Haijun Xu and
  • Wanli Ma

Beilstein J. Nanotechnol. 2019, 10, 578–588, doi:10.3762/bjnano.10.59

Graphical Abstract
  • hybrids (Ag-G.b.) by magnetron sputtering technology. The 3D surface-enhanced Raman scattering (SERS) substrate is fabricated from an original chitin-based nanostructure, which serves as a bio-scaffold for Ag nanofilms to be coated on. The novel crisscrossing plate-like nanostructures of 3D Ag-G.b
  • . nanohybrids with thick Ag nanofilms provide a substantial contribution to SERS enhancement. Measuring the SERS performance with crystal violet (CV), the Ag-G.b. nanohybrids with the sputtering time of 20 min (Ag-G.b.-20) shows the highest enhancement performance with an enhancement factor (EF) of up to 2.96
  • a bio-scaffold for the coating with magnetron-sputtered Ag nanofilms. The thickness of Ag nanofilms and the size of the nanogaps deposited on the G.b. wing arrays can be easily controlled by tuning the sputtering time. In order to find the optimum SERS enhancement performance, the sputtering time is
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
PDF
Album
Full Research Paper
Published 21 Jan 2019

Fast diffusion of silver in TiO2 nanotube arrays

  • Wanggang Zhang,
  • Yiming Liu,
  • Diaoyu Zhou,
  • Hui Wang,
  • Wei Liang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2016, 7, 1129–1140, doi:10.3762/bjnano.7.105

Graphical Abstract
  • on the evolution of Ag nanofilms on the surface of TiO2 nanotubes and microstructure of Ag nanofilms are investigated by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Ag atoms migrate mainly on the outmost surface of the TiO2 nanotubes, and fast
  • treatment of TiO2 nanotube arrays coated with Ag nanofilms. The microstructures of the Ag@TiO2 nanotube arrays are characterized to determine the diffusivity and activation energy of the Ag diffusion on the surface of the TiO2 nanotubes. Results The preparation route of the Ag@TiO2 nanotubes is
  • clean outmost surface (Figure 2b). The prepared TiO2 nanotube arrays were rinsed with water and dried in air. Deposition of Ag nanofilms on the top of TiO2 nanotube arrays Ag nanofilm of 230 ± 10 nm in thickness was deposited on the top of the TiO2 nanotube arrays at room temperature (25 °C) via
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2016

Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory

  • Marina E. Vance,
  • Todd Kuiken,
  • Eric P. Vejerano,
  • Sean P. McGinnis,
  • Michael F. Hochella Jr.,
  • David Rejeski and
  • Matthew S. Hull

Beilstein J. Nanotechnol. 2015, 6, 1769–1780, doi:10.3762/bjnano.6.181

Graphical Abstract
  • shape and size of nanomaterials in consumer products (i.e., units of nanometers or micrometers, thickness of nanofilms, diameter or length of fibers or tubes, diameter or radius of nanoparticles, maximum, median, average, or minimum size), this descriptor was added as a text entry field in the database
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2015

Formation of CuxAu1−x phases by cold homogenization of Au/Cu nanocrystalline thin films

  • Alona Tynkova,
  • Gabor L. Katona,
  • Gabor A. Langer,
  • Sergey I. Sidorenko,
  • Svetlana M. Voloshko and
  • Dezso L. Beke

Beilstein J. Nanotechnol. 2014, 5, 1491–1500, doi:10.3762/bjnano.5.162

Graphical Abstract
  • using a simple model the interface velocity in both the Cu and Au layers were estimated from the linear increase of the average composition and its value is about two orders of magnitude larger in Au (ca. 10−11 m/s) than in Cu (ca. 10−13 m/s). Keywords: Cu/Au; grain boundary diffusion; nanofilms of
PDF
Album
Full Research Paper
Published 10 Sep 2014

Controlled synthesis and tunable properties of ultrathin silica nanotubes through spontaneous polycondensation on polyamine fibrils

  • Jian-Jun Yuan,
  • Pei-Xin Zhu,
  • Daisuke Noda and
  • Ren-Hua Jin

Beilstein J. Nanotechnol. 2013, 4, 793–804, doi:10.3762/bjnano.4.90

Graphical Abstract
  • formation from a higher molar ratio of [OH]/[EI] (0.8, Figure 1A–C), the decreased molar ratio of [OH]/[EI] induced the formation of nanofilms. This could be attributed to a slower crystallization rate of LPEI, because of insufficient neutralization of the protonated LPEI. On the other hand, when the molar
  • formation induced by NaOH. Figure 7 shows the SEM images of silicas prepared by using ammonia solution (NH4OH) to induce self-assembly of LPEI with molar ratios [OH]/[EI] = 0.6, 0.8 and 3.2. We found that silica nanofilms were formed by using a molar ratio [OH]/[EI] = 0.6 (Figure 7A and Figure 7B), because
  • the LPEI crystallization was delayed due to weak basicity of the ammonia solution and a low degree of deprotonation of LPEI–H+. This is consistent with the formation of silica nanofilms by using NaOH with low molar ratios [OH]/[EI]. Furthermore, when increasing the molar ratio [OH]/[EI] to 0.8, the
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2013
Other Beilstein-Institut Open Science Activities