Search results

Search for "nanoparticle" in Full Text gives 648 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • been shown that a novel protein-based nanoparticle with enhanced photothermal effect has been obtained for antitumor therapy using metal ions, proteins, and photosensitizers as building blocks [69]. The integration of metal ions significantly improved the structural stability and photothermal
  • properties of the nanoparticles [69]. The use of amino acids coordinated with metal ions and the encapsulation of guest molecule photosensitizers have also achieved encouraging results. Zhang et al. [70] developed an antitumor photodynamic therapy (PDT) nanoparticle based on the coordination of modified
  • +/Ce6 was greater than 50.0% in both cases, and the encapsulation efficiency was greater than 99.0%. The Fmoc-H/Zn2+/Ce6 and Z-HF/Zn2+/Ce6 nanoparticle assembly were based on coordination and other noncovalent interactions which are sensitive to environmental changes. They demonstrated the robustness of
PDF
Album
Review
Published 12 Oct 2021

pH-driven enhancement of anti-tubercular drug loading on iron oxide nanoparticles for drug delivery in macrophages

  • Karishma Berta Cotta,
  • Sarika Mehra and
  • Rajdip Bandyopadhyaya

Beilstein J. Nanotechnol. 2021, 12, 1127–1139, doi:10.3762/bjnano.12.84

Graphical Abstract
  • Karishma Berta Cotta Sarika Mehra Rajdip Bandyopadhyaya Centre for Research in Nanotechnology and Science, IIT Bombay, Powai, Mumbai, Maharashtra – 400076, India Chemical Engineering Department, IIT Bombay, Powai, Mumbai, Maharashtra – 400076, India 10.3762/bjnano.12.84 Abstract Nanoparticle
  • with stabilizing agents. We hypothesize that, zwitterionic drugs like norfloxacin (NOR, a fluoroquinolone) can manifest dual functionality – nanoparticle stabilization and antibiotic activity, eliminating the need of a separate stabilizing agent. Since these drugs have different charges, depending on
  • imparts multiple benefits – improved IONP stability, enhanced drug coating, higher drug uptake in macrophages at reduced toxicity and slower drug release. Keywords: drug-nanoparticle interactions; drug uptake; intra-macrophage; iron oxide nanoparticles; norfloxacin; Introduction Nanoparticles have taken
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • and carbon-based nanostructures in the device architecture. Six types of OLED with AgNP, AuNP, GR, MWNT, SWNT, and GR + AuNP in the device structure were compared. In general, plasmonic nanoparticle-based OLED demonstrate lower turn-on voltages and higher luminance compared to the graphene or CNT
PDF
Album
Review
Published 24 Sep 2021

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • environments because in this type of formulation, it is preferred that the nanoparticle is stable at pH 7.4 (pH of a healthy tissue) and that CUR release is carried out in an acidic pH, which is characteristic of tumor cell endosomes (pH 5.0–5.8) [39]. On the other hand, Bonaccorso et al. [85] compared CUR
PDF
Album
Review
Published 15 Sep 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • electron beam, which caused the particles to appear larger. Consequently, the stacked deflection peaks (Figure 5b, 14.7 nm, red and green mark) correspond to a nanoparticle cluster similar to those found in Figure 4b. Chemical composition To confirm the XRD results for stibnite and to examine the
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • to the shuttle effect, low electrochemical utilization of sulfur, and low specific surface area [16][52]. Many of these drawbacks can be overcome by reducing the size of the active sulfur phase to the nanoparticle range. The accompanied increase in surface area generally accelerates interfacial
  • search results were reduced to half (703) and to a quarter (358) when “room-temperature” and additionally “sulfur or sulphur” were added to the search query, respectively, leaving the abovementioned companies still as the main applicants. The additional inclusion of the term “nanoparticle or
PDF
Album
Review
Published 09 Sep 2021

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • of gold and silver nanoparticles. Surface plasmon resonance is an inherent property of plasmonic metal nanoparticles that is immensely employed as a tool for theranostics and is highly influenced by the size and shape of the nanoparticle [2]. The property of SPR has also been exploited for nanochips
  • ability of NIR/IR rays to deeply penetrate tissues, enabling nanoparticle-mediated photothermal or contrast effects. However, the final purpose of these nanomaterials for biological applications is determined after successful toxicity assessment and stability evaluation in biological media [8
  • potentials, neutralizing charge, and in particular, crystal face pacification, enabling preferential crystal growth. DESs are the medium where nanoparticle synthesis occurs in the presence of capping agent and reducing agents. Biocompatible capping and reducing agents, such as carbohydrates (i.e
PDF
Album
Review
Published 18 Aug 2021

Modification of a SERS-active Ag surface to promote adsorption of charged analytes: effect of Cu2+ ions

  • Bahdan V. Ranishenka,
  • Andrei Yu. Panarin,
  • Irina A. Chelnokova,
  • Sergei N. Terekhov,
  • Peter Mojzes and
  • Vadim V. Shmanai

Beilstein J. Nanotechnol. 2021, 12, 902–912, doi:10.3762/bjnano.12.67

Graphical Abstract
  • round bottom flask and stirred until complete dissolution. Then, 640 µL of 4 mg/mL silver nitrate solution were added under vigorous stirring and kept for 4 h in the ultrasonic bath. The resulting silver nanoparticle solution was dialyzed against 2.5 mM sodium citrate and stored at 4 °С. Glass and
PDF
Album
Supp Info
Full Research Paper
Published 16 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles nucleated in NaOH-treated halloysite: a potential antimicrobial material

  • Yuri B. Matos,
  • Rodrigo S. Romanus,
  • Mattheus Torquato,
  • Edgar H. de Souza,
  • Rodrigo L. Villanova,
  • Marlene Soares and
  • Emilson R. Viana

Beilstein J. Nanotechnol. 2021, 12, 798–807, doi:10.3762/bjnano.12.63

Graphical Abstract
  • , and HNT-8 were recorded with TEM, while sample HNT-8 was also measured with XRD. (XRD was also performed for HNT-0 and HNT-4 but omitted from this report because it did not show any significant difference from HNT-8). Silver nanoparticle synthesis To synthesize silver nanoparticles, 10 g of HNT (from
  • and DSC analysis, from room temperature up to 600 °C, at constant heating of 20 °C/min. In order to observe the phases identified in the DSC/TGA measurements, four 10 g samples of HNT-8 were loaded with AgNO3 using the process described in section “Silver nanoparticle synthesis” and heated up to 65
  • , to a concentration of 105 CFU/mL. These new 105 CFU/mL suspensions were then divided into ten tubes each, and to each were added the following concentrations of Ag/HNT-0 or Ag/HNT-8: 3, 6, 12, 25, 50, 100, 200, 400, 800, and 1600 ppm. Finally, each nanoparticle + bacteria suspension was incubated
PDF
Album
Full Research Paper
Published 05 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • this, the new microrobot is expected to be used in targeted drug delivery and other biomedical fields. Si et al. [27] proposed a theoretical concept of a nanorobot consisting of a nanoparticle and four single-stranded DNAs placed on a quad-nanopore device for motion control. When an electric field is
PDF
Album
Review
Published 20 Jul 2021

Recent progress in magnetic applications for micro- and nanorobots

  • Ke Xu,
  • Shuang Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2021, 12, 744–755, doi:10.3762/bjnano.12.58

Graphical Abstract
  • processes of MNPs are adopted to fabricate MNRs [37]. A rotating magnetic field was often used to break particle chains into shorter fragments. As the magnetic field changes, the particle chain will be broken and re-formed. While disassembling the paramagnetic nanoparticle chains of MNRs, it is necessary to
  • paramagnetic nanoparticle chains. They used a predefined dynamic magnetic field that could controllably spread and fragment the particle chains. This is an effective strategy that shows that the assembly and disassembly process is reversible. Swarms of MNR paramagnetic nanoparticles moved together in the form
  • the same time, in order to reduce the chance of reorganization of the fragments a distance between disassembled parts could be established. Through magnetically induced repulsive forces the nanoparticle chains were forced to diffuse in different directions. This new method is of great significance for
PDF
Album
Review
Published 19 Jul 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • interaction between metals and the MoS2 monolayer is of great importance when selecting systems for specific applications. In previous studies the focus has been largely on the strength of the interaction between a single atom or a nanoparticle of a range of metals, which has created a significant knowledge
  • catalysts or for preventing islanding of conductive metals. Typically, theoretical studies focus on the adsorption of either single atoms of a series of metals [21][23][24][25][27] or large nanoparticle-like structures [19][20]. In our previous study we identified that while these studies do deliver useful
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

Fate and transformation of silver nanoparticles in different biological conditions

  • Barbara Pem,
  • Marija Ćurlin,
  • Darija Domazet Jurašin,
  • Valerije Vrček,
  • Rinea Barbir,
  • Vedran Micek,
  • Raluca M. Fratila,
  • Jesus M. de la Fuente and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2021, 12, 665–679, doi:10.3762/bjnano.12.53

Graphical Abstract
  • vivo settings. Keywords: animal tissue; biological media; nanoparticle aggregation; nanoparticle dissolution; nanoparticle reformation; silver nanoparticles; Introduction The global consumption of silver nanoparticles (AgNPs) has been steadily increasing in the last decade and estimated to reach over
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?

  • Kirill O. Paperzh,
  • Anastasia A. Alekseenko,
  • Vadim A. Volochaev,
  • Ilya V. Pankov,
  • Olga A. Safronenko and
  • Vladimir E. Guterman

Beilstein J. Nanotechnol. 2021, 12, 593–606, doi:10.3762/bjnano.12.49

Graphical Abstract
  • min. A drop of the resulting suspension was applied to a standard copper mesh with a diameter of 3.05 mm, covered with a 5–6 nm thick layer of amorphous carbon. Next, the sample was dried in air at room temperature for 60 min. The histograms of platinum nanoparticle size distribution in the catalysts
  • in the catalysts ranged from 1.2 (samples G20 and G25) to 1.3 nm (G30, G35, and G40) (Table 2). A selective electron microscopy study of the synthesized materials (Figure 2) showed that with an increase in the Pt loading in the catalysts, the average nanoparticle size also increased from 2 (G20) to
  • the k-type, Θk is the fraction of the nanoparticle surface belonging to the k-type areas. Taking into account platinum nanoparticles with different numbers of catalytically active sites on their surface (different types of faces, edges, vertices, steps) it can be assumed that the smaller the amount of
PDF
Album
Supp Info
Full Research Paper
Published 29 Jun 2021

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • on the substrates [8], the synthesis of complex nanoparticle structures with tunable interparticle gap sizes [9], the utilization of micro- and nanofabricated structures obtained by lithography techniques [10][11][12] comprising nanodisk arrays [13], nanoholes [14][15], nanocups [16][17
  • ], nanogratings [18], or the customization of readily available structures (i.e., HR-DVD templates) [19]. The aim of these developments is not only the optimization of the nanoparticle arrangement to obtain high enhancement factors, but also to guarantee uniformity, homogeneity, the ease of fabrication, low
  • typical heating process) which initiates the reduction of the silver salt by ethanol. This triggers a short burst of silver nanoparticle nucleation, which forms reaction seeds on the glass substrate. The strong affinity of the silver ions for the free hydroxyl groups of glass surfaces allows for the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • near gold nanoparticles protected by various ligands [38][39]. The results of hydrogen bond dynamics and calculated far-IR spectra showed that a well-defined multilayered structure of water is formed close to the surface of the metal nanoparticle. The stabilization of this structure may be additionally
  • enhanced by the mobility decrease in the nearest vicinity of the metal nanoparticle and by the increase of the rotational relaxation time and residence time of water molecules surrounding the ion wall in a charged monolayer-protected Au nanoparticle [39]. Assuming that the observed Raman enhancement is
  • the water molecules could not be specifically organised onto the metal surface. Therefore, the shape and size of AgNPs may be the crucial point – more precisely, the optical plasmons responsible for the colour of the AgNPs. The location of the enhancement of the electric field around the nanoparticle
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • , Hitachi, Japan). In the photothermal experiment, an 808 nm CW laser (MDL-III-808 nm, CNI, China) was used to irradiate the nanoparticle solutions, and temperature changes of all samples were recorded with an infrared thermal camera (225s, Fotric, China). Preparation of AuNRs AuNRs were synthesized
PDF
Album
Full Research Paper
Published 17 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • determined not only by the large part of the surface atoms, but also by the crystallographic orientation on their surface. The number of atoms on the surface is influenced by the size of the nanoparticle, while the crystallographic orientation depends on the shape of the particles. The surfaces with {111
  • –NIR absorption spectroscopy: Metallic nanoparticles are known to emit characteristic colors in the visible region of the electromagnetic spectrum due to a phenomenon known as surface plasmon resonance. The color of a colloidal nanoparticle solution is mainly dependent on the size and shape of the
  • equations. Following the discrete dipole approximation (DDA), it is possible to calculate the dipole polarized by the incident light and all the other dipoles in the nanoparticle matrix, in addition to predicting the behavior of their respective spectra. Figure 11 shows the extinction, absorption, and
PDF
Album
Supp Info
Review
Published 14 May 2021

The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors

  • Nikola Geskovski,
  • Nadica Matevska-Geshkovska,
  • Simona Dimchevska Sazdovska,
  • Marija Glavas Dodov,
  • Kristina Mladenovska and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2021, 12, 375–401, doi:10.3762/bjnano.12.31

Graphical Abstract
  • development and survival have fostered the parallel development of multifunctional bioactive nanomedicines capable of attacking multiple targets, which hold potential to overcome current deficiencies of targeted therapy. Targeting strategies with innovative ligands for nanoparticle surface engineering
PDF
Album
Review
Published 29 Apr 2021

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • Materials Research Center and Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany 10.3762/bjnano.12.28 Abstract We report for the first time the combination of WO3 sensing elements with a non-noble metal–carbon composite, namely a nickel metal nanoparticle
  • decomposition approach with rGO synthesized from reduced graphite oxide at 400 °C. It is extremely important that the used rGO is thoroughly dried because of the oxyphilic nature of nickel nanoparticles. Therefore, before the nanoparticle synthesis, the rGO was dried using a turbo molecular pump at 5 × 10−7
  • (Figure 3). Therefore, the thermal decomposition of the WO3 xerogel leads to the formation of only one crystalline WO3 phase without crystalline by-products. The average size of WO3 nanoparticle crystallites, calculated from the powder pattern using the Scherrer equation, is 40 nm. The SEM images show
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Differences in surface chemistry of iron oxide nanoparticles result in different routes of internalization

  • Barbora Svitkova,
  • Vlasta Zavisova,
  • Veronika Nemethova,
  • Martina Koneracka,
  • Miroslava Kretova,
  • Filip Razga,
  • Monika Ursinyova and
  • Alena Gabelova

Beilstein J. Nanotechnol. 2021, 12, 270–281, doi:10.3762/bjnano.12.22

Graphical Abstract
  • .12.22 Abstract The efficient entry of nanotechnology-based pharmaceuticals into target cells is highly desired to reach high therapeutic efficiency while minimizing the side effects. Despite intensive research, the impact of the surface coating on the mechanism of nanoparticle uptake is not sufficiently
  • carrier, are the most frequently used materials for biomedical applications [17][18][19][20]. The impact of the surface chemistry on the mechanism of nanoparticle uptake has not been sufficiently clarified yet. MNPs with comparable basic physicochemical characteristics (e.g., particle size, surface charge
  • endocytosis. BSA-SO-MNPs were internalized via CME while PEG-SO-MNPs were taken up via CavME or lipid rafts. These findings confirm the major role of nanoparticle coatings on cellular entry mechanisms. Our data suggest that the effects of endocytic inhibitors on the internalization pathways are rather complex
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2021

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • been reported to improve the weight and the height of tobacco plants and it was also successful in reducing the severity of bacterial wilt caused by Ralstonia solanacearum when compared to control or to other magnesium dioxide nanoparticle concentrations (50 and 150 µg/mL) [23]. The ability of MgO NPs
  • µg) did not increase the production of ROS and it was suggested that the its effect on hematopoiesis was self-repaired and the damage to the hematopoietic tissues was limited. Zou et al. [155] studied the efficacy in using silver nanoparticle colloids (AgNPC) to reduce the infection caused by BmNPV
PDF
Album
Review
Published 12 Feb 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • pressure), it can synthesize AgNPs at a lower temperature compared to the sol–gel process alone [144]. Nevertheless, there are some disadvantages regarding the application and feasibility of sol–gel-produced nanoparticles and nanocomposites. For instance, in industrial applications of nanoparticle-doped
  • deposition process. Chemical vapor deposition (CVD) and atomic layer deposition (ALD) are among other chemical methods for nanoparticle synthesis. CVD is a method that allows production of nanoparticles on a substrate [241]. The process consists of three steps. First, the addition of a volatile precursor in
  • surface. We have recently reviewed engineered TMV and its virus‐like‐particles (VLPs) for synthesis of biotemplated nanomaterials. We also discussed the recent advances on novel barely stripe mosaic virus (BSMV) and its VLP as a novel template for metal nanoparticle synthesis [273][274]. 3.4 Algae
PDF
Album
Review
Published 25 Jan 2021
Other Beilstein-Institut Open Science Activities