Search results

Search for "nanoparticle formation" in Full Text gives 39 result(s) in Beilstein Journal of Nanotechnology.

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • challenges remain unresolved. Fundamental knowledge on the mechanisms of plasma polymer nanoparticle formation is still far from being complete. Although rich information regarding the nucleation and growth of nanoparticles in organosilicon and hydrocarbon plasmas is available, a deep understanding of these
PDF
Album
Review
Published 25 Sep 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
PDF
Album
Review
Published 03 Aug 2017

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • is the optimum organic solvent for amphiphilic CDs in this study. In the nanoprecipitation technique, nanoparticle formation occurs as a result of interfacial turbulence between two unequilibrated liquid phases. For the formation of turbulence, the liquid phases (organic phase and liquid phase) used
PDF
Album
Full Research Paper
Published 13 Jul 2017

Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

  • Kai Rückriem,
  • Sarah Grotheer,
  • Henning Vieker,
  • Paul Penner,
  • André Beyer,
  • Armin Gölzhäuser and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2016, 7, 852–861, doi:10.3762/bjnano.7.77

Graphical Abstract
  • evidence that nanoparticle formation is primarily controlled by the available amount of precursor. Keywords: copper(II) oxalate; electron-induced reactions; layer-by-layer deposition; nanoparticle formation; thin film; Introduction Electron-induced chemistry is a versatile approach to the fabrication of
  • ) oxalate is a material that has particularly favorable properties as a precursor for electron-induced nanoparticle formation at surfaces. Surface layers of this compound can be prepared with well-defined thickness using a recently established layer-by-layer deposition procedure [26]. Similar to the self
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2016

Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica

  • Liz M. Rösken,
  • Felix Cappel,
  • Susanne Körsten,
  • Christian B. Fischer,
  • Andreas Schönleber,
  • Sander van Smaalen,
  • Stefan Geimer,
  • Christian Beresko,
  • Georg Ankerhold and
  • Stefan Wehner

Beilstein J. Nanotechnol. 2016, 7, 312–327, doi:10.3762/bjnano.7.30

Graphical Abstract
  • plotted stacked in Figure 2 and a smoothened line was added to improve readability. From bottom to top data are shown for a reference without any added gold and therefore no nanoparticle formation (grey filled stars). Further samples were taken 75 minutes (black open squares), 115 min (red open circles
  • the nanoparticle production [23][29]. This will not be necessarily true for metal nanoparticle formed at the cell-wall at the outside of the cell, but even this constitutes a more restricted location than in a solution. In inorganic systems effects of the confinement on the nanoparticle formation have
  • cylindrica the time scale of nanoparticle formation is comparable for both cyanobacteria. Within some hours the final size of the biosynthesized nanoparticles is achieved, as recorded by XRD. In Figure 7 the average size of the gold nanoparticles is shown over the time of incubation for Anabaena cylindrica
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • ] or improved drug targeting. These optimization procedures are generally performed after particle assembly, since the nanoparticle formation is influenced by many parameters and often limited by minor changes in the experimental setup. However, several further surface modifications are well
PDF
Album
Full Research Paper
Published 30 Dec 2015

Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes

  • Sebastian Gutsch,
  • Daniel Hiller,
  • Jan Laube,
  • Margit Zacharias and
  • Christian Kübel

Beilstein J. Nanotechnol. 2015, 6, 964–970, doi:10.3762/bjnano.6.99

Graphical Abstract
  • -normal distribution. The results strongly reflect the ability to control the Si NC size by geometrical one-dimensional confinement of the SRON layers. Furthermore, the influence of the SRON stoichiometry on Si nanoparticle formation is demonstrated in Figure 4c–e. Interestingly, increasing the Si excess
PDF
Album
Full Research Paper
Published 15 Apr 2015

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • inorganic nanoparticles takes places on biopolymer molecules or on particles: (B1) Nanoparticle formation on biopolymer molecules (often referred to as “metallization” and “mineralization” of biopolymers). (B2) Biopolymer particles as support, with the formation of the inorganic nanoparticles taking place
PDF
Album
Review
Published 17 Nov 2014

The impact of the confinement of reactants on the metal distribution in bimetallic nanoparticles synthesized in reverse micelles

  • Concha Tojo,
  • Elena González and
  • Nuria Vila-Romeu

Beilstein J. Nanotechnol. 2014, 5, 1966–1979, doi:10.3762/bjnano.5.206

Graphical Abstract
  • by the surfactant), and is directly related to the facility with which intermicellar channels can be established. The intermicellar exchange of material takes place through the intermicellar channel, thus the kinetics of the nanoparticle formation will strongly depend on the channel feature. Two
  • distribution in bimetallic nanoparticles Nanoparticle formation is complete when the contents of each micelle do not vary with time. Each simulation run results in a set of micelles, each of which can contain a particle whose composition can be different. The composition of each particle is stored during the
PDF
Album
Full Research Paper
Published 04 Nov 2014

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

  • Annalena Wolff,
  • Walid Hetaba,
  • Marco Wißbrock,
  • Stefan Löffler,
  • Nadine Mill,
  • Katrin Eckstädt,
  • Axel Dreyer,
  • Inga Ennen,
  • Norbert Sewald,
  • Peter Schattschneider and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2014, 5, 210–218, doi:10.3762/bjnano.5.23

Graphical Abstract
  • protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including
  • oriented attachment (OA) and Ostwald ripening (OR) process. The single contributions from the oriented attachment model as well as the Ostwald ripening are displayed as dashed lines. Schematic of nanoparticle formation during the biomimetic growth process. (a) Crystallites are formed, (b) c25-mms6
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2014

Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates

  • Stella Kiel,
  • Olga Grinberg,
  • Nina Perkas,
  • Jerome Charmet,
  • Herbert Kepner and
  • Aharon Gedanken

Beilstein J. Nanotechnol. 2012, 3, 267–276, doi:10.3762/bjnano.3.30

Graphical Abstract
  • due to a directional growth of the KI on the silicon surface. An additional proof of nanoparticle formation in the sonochemical reaction, based on sonication of the saturated solution of NaCl (CuSO4, KI), was the formation of sediment that was not immobilized on the glass slide but instead
PDF
Album
Full Research Paper
Published 21 Mar 2012
Graphical Abstract
  • generation of Au nanostructures on the LPEI@silica nanograss. SEM images show no damage or change to the surface of the LPEI@silica nanograss due to treatment in the aqueous solution of NaAuCl4, as seen before (Supporting Information File 1, Figure S3) and after Au nanoparticle formation (Figure 8b). TEM
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2011

Formation of SiC nanoparticles in an atmospheric microwave plasma

  • Martin Vennekamp,
  • Ingolf Bauer,
  • Matthias Groh,
  • Evgeni Sperling,
  • Susanne Ueberlein,
  • Maksym Myndyk,
  • Gerrit Mäder and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2011, 2, 665–673, doi:10.3762/bjnano.2.71

Graphical Abstract
  • plasma synthesis an ideal tool for nanoparticle formation. In a gaseous plasma there exist several radical and ion species, which are formed by the decomposition of the feed gases [9][22]. The system will minimize its internal energy, if possible, by building molecules or clusters. Small particles of SiC
PDF
Album
Video
Full Research Paper
Published 07 Oct 2011

Precursor concentration and temperature controlled formation of polyvinyl alcohol-capped CdSe-quantum dots

  • Chetan P. Shah,
  • Madhabchandra Rath,
  • Manmohan Kumar and
  • Parma N. Bajaj

Beilstein J. Nanotechnol. 2010, 1, 119–127, doi:10.3762/bjnano.1.14

Graphical Abstract
  • , or vice versa, could be due to the mechanism of nanoparticle formation. Cd2+ ions are freely available from the Cd(OAc)2 precursor, whereas the counter part is released from SeSO32− much slower. Therefore, the concentration of Cd(OAc)2 governs the number of nucleation sites available for the growth
PDF
Album
Full Research Paper
Published 07 Dec 2010
Other Beilstein-Institut Open Science Activities